• Title/Summary/Keyword: High-temperature tolerance

Search Result 280, Processing Time 0.027 seconds

Hot Tolerance Assessment of Sedum spp. for Extensive Green Roof System (저관리·경량형 옥상녹화를 위한 세덤류의 내서성 평가)

  • Zhao, Hong-Xia;Son, Hee-Jun;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.180-189
    • /
    • 2012
  • This study was carried out to suggest an experiment based for selecting Sedum, which can adapt well with heat tolerance in extensive green roof system. The heat tolerance of Sedum subject to laboratory high temperature treatment and heat processing time were evaluated using electrolyte leakage, chlorophyll content and regrowth test, and the relation between soil water content and heat tolerance were researched. Logistic model of nonlinear regression analysis was used to evaluate the lethal temperatures that were predicted with the range of $45.0{\sim}48.1^{\circ}C$(soil water content 5%), $47.5{\sim}49.3^{\circ}C$(10%), $48.6{\sim}52.8^{\circ}C$(15%) in 6-hours high-temperature treatment. The higher the soil water content, the stronger the heat resistance property of Sedum. there is. The higher the treatment temperature, the lower the chlorophyll content, and the less the soil water content, the faster the chlorophyll decomposition. The order of hot-temperature resistance was S. reflexum>S. takevimense>S. middendorffianum>S. album>S. sieboldii>S. spurium when soil water content was 5%. The order of hot-temperature resistance was S. album>S. reflexum>S. spurium>S. takevimense>S. middendorffianum>S. sieboldii when soil water content was 15%. The more of soil water content, S. album, S. reflexum, S. spurium had stronger tolerant of hot temperature. These results were consistent with those from the regrowth test and the heat tolerance tested by electrolyte leakage evaluation.

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.

Development and Application of High Temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질연료전지용 MEA 개발 및 응용)

  • Lim, Tae-Hoon;Kim, Hyoung-Juhn
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.439-445
    • /
    • 2007
  • Proton exchange membrane Fuel Cells(PEMFCs) have been spotlighted because of their broad potential application for potable electrical devices, automobiles and residential usages. However, their utilization is limited to low temperature operation due to the electrolyte dehydration at high temperature. High temperature PEMFC operation offers high CO tolerance and easy water management. This review presents development of high temperature($120{\sim}200^{\circ}C$) PEMFC. Especially, PEMFC which is based on acid-doped PBI membrane is discussed.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

A Cold-Tolerant and High-Yielding Italian Ryegrass (Lolium multiflorum L.) New Variety "Hwasan 101" (내한 다수성 이탈리안 라이그라스 신품종 "화산 101호")

  • 최기준;임용우;김기용;최순호;성병렬;김원호;신동은;임영철
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Improvement of cold-tolerance of Italian ryegrass(Lo1ium multiflorum L.) is an important breeding objectivefor enlargement of cultivation area in Korea. To develop the cold-tolerant variety of Italian ryegrass,cold-tolerant clones survived under - 13- - 14$^{\circ}$C of minimum average air temperature in January wereselected in the area of Dun Nae, Kwangwon Province. The 5 lines of Italian ryegrass clones selected werepolycrossed for seed production. Synthetic seeds were examined on growth characters and forage productionsin Suwon from 1996 to 1998, in Unbong 1997 and in Younchun 1998, respectively. The growth charactersand forage productions of Italian ryegrass variety named as "Hwasan 101" were summarized as follow ;ltalian ryegrass variety, Hwasan 101 was tetraploid and showed semi-prostrate growth habit in autumn andwas not only dark green in leaf color and broad in flag leaf width but also excellent in leafiness. Also, itshowed low plant height at first heading date of 20th May and excellent lodging tolerance. Expecially,Hwasan 101 in all trial regions was 80 -90% of winter survivals that was higher than 60 -90% of Florida80 and Marshall varieties. Therefore we estimate that Hwasan 101 can be cultivated in regions that is higherthan -9$^{\circ}$C in minimum average air temperature and lower than 400m in sea level. In forage production ofHwasan 101, fresh weight and total digestible nutrient(TDN) yield were 66,940 and 6,551kghq and drymatter yield was 10,050kgha. In conclusion, Italian ryegrass, Hwasan 101 was medium and late maturingvariety but excellent in cold-tolerance, lodging-tolerance, leafiness, and forage production.(Key words : Italian ryegrass, Cold tolerance, New variety)ian ryegrass, Cold tolerance, New variety)

  • PDF

Molecular Identification and Fine Mapping of a Major Quantitative Trait Locus, OsGPq3 for Seed Low-Temperature Germinability in Rice

  • Nari Kim;Rahmatullah Jan;Jae-Ryoung Park;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.283-283
    • /
    • 2022
  • Abiotic stresses such as high/low temperature, drought, salinity, and submergence directly or indirectly influence the physiological status and molecular mechanisms of rice which badly affect yield. Especially, the low temperature causes harmful influences in the overall process of rice growth such as uneven germination and the establishment of seedlings, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In this study, 120 lines of Cheongcheong/Nagdong double haploid population were used for quantitative trait locus analysis of low-temperature germinability. The results showed significant difference in germination under low different temperature conditions. In total, 4 QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the 4 QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real time polymerase chain reaction. Based on gene function annotation and level of expression under low-temperature, our study suggested OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding.

  • PDF

Quantifying rice spikelet sterility on Vietnamese cultivars (Oryza sativa L.) under high temperature and shading condition

  • Tran, Loc Thuy;Shaitoh, Kuniyuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.43-43
    • /
    • 2017
  • During grain filling period, rice is affected by many environmental factors; including temperature, water, radiation and soil nutrition condition. In future climate, greater shading and heat tolerance will be required in rice. In this study, the effect of shading and high temperature on spikelet sterility was conducted on fourteen Vietnamese cultivars. Field experiments were studied in 2015 and 2016 to evaluate the response of Vietnamese cultivars under high temperature during grain filling stage. The high temperature and shading were applied by closing two sides of growth chamber and covered by a black cloth (50% reduced solar radiation) under the field condition after the first cultivar heading. The sterility increased significantly under high temperature and shading. The highest percentage sterile spiketlets was observed in 'Jasmine 85' (71.7%) under shading and in 'OM4900' (53.4%) under high temperature in 2015 and 2016, respectively. Among the treatments, the percentage of sterile spekelets in Vietnamese cultivars under shading was highest which was 54.9% and 41.8% in 2015 and 2016, respectively. Yield components reduced significantly in both of shading and high temperature. Corresponding with significantly decrease in yield components, the yield in high temperature and shading decreased strongly in both 2015 and 2016.

  • PDF

Temperature Characteristics of High Speed Angular Contact Ball Bearing (고속 앵귤러 컨택트 볼 베어링의 온도특성)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

Silicon Supply through Subirrigation System Alleviates High Temperature Stress in Poinsettia by Enhancing Photosynthetic Rate (저면공급한 규소에 의한 포인세티아의 광합성 능력 향상과 고온 스트레스 경감)

  • Son, Moon Sook;Park, Yoo Gyeong;Sivanesan, Iyyakkannu;Ko, Chung Ho;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.860-868
    • /
    • 2015
  • The effect of Si supplied during plant cultivation on tolerance to high temperature stress in Euphorbia pulcherrima Willd. 'Ichiban' was investigated. Rooted cuttings were transplanted into 10-cm pots and a complete nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as either $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$, was supplied through subirrigation or weekly foliar applications. After two months of cultivation, plants were placed in an environment-controlled chamber and subjected to $35{\pm}1^{\circ}C$ (high temperature) conditions for 18 days. Enhanced specific activities of enzymatic antioxidants (APX) and suppressed specific activities of non-enzymatic antioxidants (ELP) were observed in the high temperature-stressed plants with Si application. The Fv/Fm (maximum quantum yield of photosystem II), photosynthetic rate, and Si contents in the shoot increased in the treatments of $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation. The Si-treated plants had more tolerance of high temperature stress than the control plants. Of the Si sources and application methods tested, $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation were found to be the most effective in enhancing tolerance to high temperature stress.

Meteorological Constraints and Countermeasures in Rice Breeding -Breeding for cold tolerance- (기상재해와 수도육종상의 대책 - 내냉성품종육성방안-)

  • Mun-Hue Heu;Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.371-384
    • /
    • 1982
  • Highly cold tolerant varieties are requested not only at high latitute cool area but also tropical high elevated areas, and the required tolerance is different from location to location. IRRI identified 6 different types of cold tolerance required in the world for breeding purpose; a) Hokkaido type, b) Suweon type, c) Taipei 1st season type, d) Taipei 2nd season type, e) Tropical alpine type and, f) Bangladesh type. The cold tolerance requested in Korea is more eargent in Tongil group cultivars and their required tolerance is the one such as the physiological activities at low temperature are as active as in Japonica group cultivars at least during young seedling stage and reproduction stage. With conventional Japonica cultivars, such cold tolerant characters are requested as short growth duration but stable basic vegetative growth, less sensitive to high temperature and less prolonged growth duration at low temperature. The methods screening for cold tolerance were developed rapidly after the Tongil cultivar was reliesed. The facilities of screening for cold tolerance, such as, low temperature incubator, cold water tank, growth cabinet, phytotron, cold water nursery in Chuncheon, breeding nursery located in Jinbu, Unbong and Youngduk, are well established. Foreign facilities such as, cold water tank with the rapid generation advancement facilities, cold nurseries located in Banaue, Kathmandu and Kashimir may be available for the screening of some limitted breeding materials. For the reference, screening methods applied at different growth stages in Japan are introduced. The component characters of cold tolerance are not well identified, but the varietal differences in a) germinability, b) young seedling growth, c) rooting, d) tillering, e) discolation, f) nutrition uptake, g) photosynthesis rate, h) delay in heading, i) pollen sterility, and j) grain fertility at low temperature are reported to be distinguishable. Relationships among those traits are not consistent. Reported studies on the inheritance of cold tolerance are summarized. Four or more genes are controlling low temperature germinability, one or several genes are controlling seedling tolerance, and four or more genes are responsible for the pollen fertility of the rice treated with cold air or grown in the cold water nursery. But most of those data indicate that the results may come out in different way if those were tested at different temperature. Many cold tolerant parents among Japonicas, Indicas and Javanicas were identified as the results of the improvement of cold tolerance screening techniques and IRTP efforts and they are ready to be utilized. Considering a) diversification of germ plasm, b) integration of resistances to diseases and insects, c) identification of adaptability of recommending cultivars and, d) systematic control of recommending cultivars, breeding strategies for short term and long term are suggested. For short term, efforts will be concentrated mainly to the conventional cultivar group. Domestic cultivars will be used as foundation stock and ecologically different foreign introductions such as from Hokkaido, China or from Taiwan, will be used as cross parents for the adjustment of growth durations and synthsize the prototype of tolerances. While at the other side, extreme early waxy Japonicas will be crossed with the Indica parents which are identified for their resistances to the diseases and insects. Through the back corsses to waxy Japonicas, those Indica resistances will be transfered to the Japonicas and these will be utilized to the crosses for the improvement of resistances of prototype. For the long term, efforts will be payed to synthsize all the available tolerances identified any from Japonicas, Indicas and Javanicas to diversify the germ plasm. The tolerant cultivars newly synthsized, should be stable and affected minimum. to the low temperature at all the growing stages. The resistances to the diseases and insects should be integrated also. The rapid generation advancement, pollen culture and international cooperations were emphasized to maximize the breeding efficiency.

  • PDF