• Title/Summary/Keyword: High-temperature design

Search Result 2,757, Processing Time 0.034 seconds

Conceptual Design of an HTS large power transformer with continuously transposed coated conductors

  • Lee, Se-Yeon;Park, Sang-Ho;Kim, Woo-Seok;Lee, Ji-Kwang;Park, Il-Han;Chol, Kyeong-Dal;Hahn, Song-Yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.5-8
    • /
    • 2011
  • This paper shows results of a design work of a program that is to develop a large power single phase high temperature superconducting (HTS) transformer. The program forms a part of a national project in Korea. A target of the design work is an HTS power transformer with rated voltages of 154 kV/22.9 kV and material for windings is supposed to be coated conductor. The design results presents in this paper will include: 1)HTS winding structures for high voltage in liquid nitrogen, 2)design result of continuously transposed coated conductor (CTCC), 3)conceptual design of high voltage bushings, 4)cooling system. A feasibility study will succeed to this design work for construction of a prototype HTS power transformer with capacity/voltage of 33 MVA/154 kV.

The Hot Forging of Small Size Gas Turbine Disks (소형가스터빈 디스크의 얼간단조)

  • Cha, D.J.;Song, Y.S.;Kim, D.K.;Kim, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF

Analysis of Likelihood of Failure for the Thinning of High Temperature Sulfide and Naphthenic Acid Corrosion through Risk Based Inspection using API-581 (API-581에 의한 위험기반검사에서 고온 황화물 및 나프텐산 부식의 두께감소에 의한 사고발생 가능성 해석)

  • Lee Hern-Chang;Lee Joong-Hee;Kim Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.101-110
    • /
    • 2005
  • The likelihood of failure for the thinning of high temperature sulfide and naphthenic acid corrosion, which affect to a risk of facilities, was analyzed through the risk based inspection using API-581 BRD. We found that the corrosion rate was increased with increasing temperature and total acid number(TAN). And maximum value of the technical module subfactor(TMSF) was not varied with operating condition, but the TMSF was sensitively changed at the range of low temperature, low flow rate, and high TAN. Also, the TMSF was increased as an used year and inspection effectiveness increased, but it was increased as thickness, inspection number, and over design decreased.

Study on the Adiabatic Temperature Rise of High Strength Concrete with Design Compressive Strength and Mixing Temperature (타설온도 및 혼화재 치환에 따른 고강도콘크리트의 단열온도상승에 관한 연구)

  • Lee, Byoung-Chun;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Ham, Eun-Young;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.101-102
    • /
    • 2012
  • In this study, it was evaluated about hydration heat reduction under hot weather condition. Placement temperature set 25℃ and 35℃, For hydration heat reduction was applied such as FA and BFS. As a results, mixture of BFS70% is the most effective hydration temperature reduction.

  • PDF

Modeling for a Coke Dry Quenching Process Using a Theory of a Porous Material (다공질 물질의 냉각현상 연구를 통한 코크스냉각공정의 모델링)

  • Kim, Joo-Han;Lee, Yong-Ju;Kim, Ki-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.697-701
    • /
    • 2012
  • Numerical modeling for a coke dry quenching process was developed and evaluated. The cokes had similar characteristics to a porous material, therefore, its quenching analysis was simplified as a cooling process of porous blocks. A uniform inlet temperature and constant properties of materials in the oven were also assumed. With given operating conditions, temperature profiles in the cokes were calculated and compared to the actual values. The calculated temperature gradient was high at the upper part of the coke flow and the cooling rate decreased as cokes came down to the exit port. The exit port temperature of cokes was similar to the measured value, however, temperature-dependent material properties and operating conditions must be considered to predict the temperature precisely. The calculated results could be applied to design a coke oven to produce high quality cokes.

The Design of Oxide Module for High Temperature Thermoelectric Power Generation (고온 발전용 산화물 열전모듈의 설계)

  • Park, Jong-Won;Yoon, Sun-Ho;Cha, Jeong-Eui;Choi, Seung-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.93-100
    • /
    • 2008
  • The one and two pair of oxide modules for high temperature thermoelectric power generation were fabricated with $Ca_{2.7}Bi_{0.3}Co_4O_9$(p-type) and $Ca_{0.96}Bi_{0.04}Mn_{0.96}Nb_{0.04}O_3$(n-type) on $Al_2O_3$ substrate. For the optimizing of the design process, contact resistance was derived from the results of the one pair modules, and then the resistance of two pair modules were calculated to use the derived data. Those values were compared with the measured values for the optimizing of this design process. The resistance of calculated and measured two pairs modules was 0.956 $\Omega$ and 1.110 Q $\Omega$ $T_h$=833 K, respectively, the difference of resistance was about 0.15 $\Omega$. From the result, proposed design process is effective for high temperature thermoelectric oxide modules fabrication.

  • PDF

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

Research on the Analysis Method of Thermal Buckling of Subsea Pipeline Structures (해저 파이프라인 열좌굴 해석방법에 관한 연구)

  • Yang, Seung-Ho;Jung, Jong-Jin;Lee, Woo-Sub;Do, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.225-232
    • /
    • 2010
  • The requirement of design of High-Pressure/High-Temperature(HP/HT) pipelines on an seabed increases in recent years. The need of research on the analysis method to improve the design capacity is increasing. The purpose of this study is the development of the analysis method of thermal buckling of subsea pipeline structures. The analysis method of thermal buckling was established by using the commercial FEM code(ABAQUS) which shows the outstanding performance in non-linear static FE analysis. The developed method has been applied to the installation of subsea pipeline on the offshore project. For a validation, the comparative study has been carried out. This application to offshore project demonstrates the superiority of the analysis method of thermal buckling of subsea pipeline structures and testifies the application to detail design.

Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System (인코넬 718강의 UNSM처리재의 고온하의 피로특성에 관한 연구)

  • Suh, Chang Min;Nahm, Seung Hoon;Woo, Young Han;Hor, Kwang Ho;Hong, Sang Hwui;Kim, Jun Hyong;Pyun, Young Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.935-941
    • /
    • 2016
  • This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and $600^{\circ}C$. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

Use of VHVl Base Oils for High Performance ATFs

  • Moon, Woo-Sik;Yang, Si-Won
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.120-126
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changed reflecting the design changes of automatic transmissions. The major purpose of these design changes is concentrated upon improvements of both fuel economy and drivability. In order to formulate such high performance ATFs as satisfy those requirements, it is necessary to use high quality base oils like VHVI base oils and PAOs. In this study, the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Frictional characteristics are determined using the SAE No. 2 machine and ATFs are deteriorated under various controlled conditions. Moreover low-temperature fluidity, oxidation stability, and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATFs gives several benefits with respect to low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF