• 제목/요약/키워드: High-temperature degradation

검색결과 866건 처리시간 0.027초

PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향 (Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane)

  • 오소형;유동근;배석주;채선규;박권필
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.356-361
    • /
    • 2023
  • 고분자 전해질 연료전지(PEMFC) 내구성 향상을 위해서 고분자 막의 내구성을 짧은 시간에 정확히 평가하는 것은 중요하다. 고분자 막의 화학적 가속 내구 평가 시험 조건은 고전압, 고온, 저가습, 고가스압이다. 이들 조건들을 변화시키며 프로토콜을 개발한다고 할 수 있다. 그러나 각 시험 조건이 고분자 막을 열화시키는데 상대적으로 얼마나 많은 영향을 주는지 연구되지 않았다. 고분자 막 화학적 가속 열화 실험에서 4가지 인자(조건)들의 영향력을 요인실험법을 통해 검토하였다. 가속 열화 후 고분자 막 열화 정도는 수소투과도와 불소 이온 유출 농도 측정으로 알 수 있었고, 불소 이온 농도 차이에 의해 8 조건의 고분자 막 열화 순위를 결정할 수 있었다. 고분자 막 열화 인자의 영향력은 전압> 온도 > 산소압 > 습도 순임을 보였다. 고분자 막 화학적 열화에 전극 촉매 열화가 영향을 줌을 확인하였다.

고온을 받은 나일론 섬유보강 고강도 콘크리트의 크리프 거동 (Creep Behavior of Nylon Fiber Reinforced High Strength Concrete at Elevated Temperature)

  • 이영욱;김규용;최경철;윤민호;이보경;김래환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.141-142
    • /
    • 2014
  • Decrease of performance degradation of High Strength Concrete occurs more than that of normal strength concrete at elevated temperature. Therefore, when it comes to evaluating performance of structures, strain of concrete subjected to elevated temperature and loading are important items. In this study, creep strain of High Strength Concrete sunjected to various temperature conditions and 33% loading was evaluated. As a result, creep strain increased with increase of temperature and loading. Creep strain of concrete at high temperature is influenced by loading.

  • PDF

SOI BMFET 의 고온 특성 분석 (High Temperature Characteristics of SOI BMFET)

  • 임무섭;김성동;한민구;최연익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1579-1581
    • /
    • 1996
  • The high temperature characteristics of SOI BMFET are analyzed by the numerical simulation and compared with MOS-gated SOI power devices at high temperatures. The proposed SOI BMFET combines bipolar operation in the on-state with unipolar FET operation in the off-state, so that it may be suitable for high temperature operation without any significant degradation of performance such as the leakage current and blocking capability. The simulation results show that SOI BMFET with a higher doped n-resurf layer is the most promising device far high temperature application as compared with MOS-gated SOI power devices, exhibiting the low on-state voltage drop as well as the excellent forward blocking capability at high temperature.

  • PDF

고온시 고강도 콘크리트의 물리적 특성 모델 설정에 관한 실험적 연구 (An Experimental Study on the Physical Properties Model of High Strength Concrete at High Temperature)

  • 김흥열;서치호;최승관;전현규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.1-4
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on physical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200 $^{circ}C$, the physical models of concrete such as specific heat and thermal conductivity, show visible degradation, regardless of concrete strength. Second, between 300 to 600$^{circ}C$, the physical models of the 29MPa and 49MPa concrete show degradation continually at these temperatures. Finally, beyond 600$^{circ}C$, the physical models of 49MPa strength concrete show larger degradation than 29MPa strength concrete due to rise of pore pressure and melting of the interface between aggregate and cement paste.

  • PDF

Effects of $H_2$ vs. $O_2$ Plasma Pretreatment of Gate Oxide on the Degradation Phenomenon of Low-Temperature Polysilicon Thin-Film Transistors

  • Lee, Seok-Woo;Kang, Ho-Chul;Yang, Joon-Young;Kim, Eu-Gene;Kim, Sang-Hyun;Lim, Kyoung-Moon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1254-1257
    • /
    • 2004
  • Comparative study on the effects of $H_2$ vs. $O_2$ plasma pretreatment of gate oxide on the degradation phenomenon of p-channel low-temperature polysilicon (LTPS) thin-film transistors (TFTs) were performed. After high drain current stress (HDCS) with $V_{gs}$ = $V_{ds}$, the p-channel TFTs pretreated by $O_2$ plasma showed increased immunity to the degradation of device characteristics such as threshold voltage and maximum field effect mobility because of the higher binding energy of Si-O bond than that of Si-H bond. The investigation of degradation phenomenon of these parameters with the applied power suggests that self-heating can be the major cause of degradation of polysilicon TFTs.

  • PDF

Analysis on the electrical degradation characteristics of 2G HTS wires with respect to the electrical breakdown voltages

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.37-40
    • /
    • 2015
  • Recently, the electrical insulation design for electrical apparatuses is important to cope with the tendency of high voltage. The degradation characteristics of a superconducting coil due to an electrical breakdown should be considered to design a high voltage superconducting coil. In this paper, the degradation characteristics of 2G high temperature superconducting (HTS) wires are studied with respect to electrical breakdown tests. To analyze the dependency of the degradation characteristics of 2G HTS wires, the electrical breakdown tests are performed with AC(alternating current) and DC(direct current) voltage. All tests are performed by applying various magnitudes of AC and DC breakdown voltages. To verify the degradation characteristics of 2G HTS wires, the tests are performed with various 2G HTS wires with respect to stabilizer materials. The degradation characteristics of 2G HTS wires, such as Ic(critical current) and index number are measured by performing electrical breakdown tests. It is found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it is concluded that the degradation characteristics of 2G HTS wires are affected by the stabilizer material and applied voltages. The cross-sectional view of 2G HTS wires is observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS wires are concerned with hardness and electrical conductivity of stabilizer layers.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

High operating temperature stable OLEDs with reduced reflectivity cathodes

  • Popovic, Zoran D.;Aziz, Hany;Vamvounis, George;Hu, Nan-Xing;Paine, Tony
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.21-24
    • /
    • 2003
  • The understanding of the mechanism of device degradation has been accomplished recently, for devices using $AlQ_3$ electron transport and emitter molecule. In this presentation the experimental evidence for the degradation mechanism of $AlQ_3$ based devices will be reviewed, showing that the hypothesis of an unstable $AlQ_3^+$ cation explains a large amount of experimental data. This hypothesis, however, explains not only the room temperature device degradation in time but also sheds light on temperature stability of OLEDs. Dependence of half-life of a series of devices with an emitter layer composed of a mixture of $AlQ_3$ and different hole transport molecules (mixed emitter layer) will be discussed when they are operated at elevated temperatures. These results can also be explained in the framework of an unstable $AlQ_3^+$ species. An OLED structure containing a doped mixed emitter layer will be described, which shows extraordinary stability, half-life of 1200 hours at operating temperature of 70 C and initial luminance of 1650 $cd/m^2$. We will also discuss a novel Black $Cathode^{TM}$ OLED with reduced optical reflectivity, which is also stable at elevated temperatures. The new cathode utilizes a conductive light-absorbing layer made of a mixture of metals and organic materials.

  • PDF

2.5Y-TZP의 안정성에 관한 연구 (Thermal Stability of 2.5Y-TZP under Low-Temperature Aging)

  • 장성도;오경영
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.226-232
    • /
    • 1990
  • The degradation phenomena and thermal stability of 2.5Y-TZP at low-temperature were studied by means of XRD, Raman spectra and microstructural analysis. The degradation of heat-treated 2.5Y-TZP at 20$0^{\circ}C$-20hr in air was observed on the TZP surface, be caused by the cracks generated from tlongrightarrowm transformation, and the cracks was propagated inside the polycrystalline body. The ZrO2 grain boundaries and grains near the crack were revealed as if these were diffused and dissolved. And it was also observed mlongrightarrowt transformation as the degraded TZP was refired at 140$0^{\circ}C$, and it was thought to be the fact that the moisture in atmosphere during the aging process contributed to the degradation. The thermal stability of 2.5Y-TZP was improved dramatically with an addition of 3w/o CeO2 or a provision of high Y2O3 concentration on the TZP surface.

  • PDF