• Title/Summary/Keyword: High-temperature deformation

Search Result 846, Processing Time 0.024 seconds

Deformation Properties of TiC-Mo Eutectic Composite at High Temperature (TiC-Mo 공정복합재료의 고온 변형특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.568-573
    • /
    • 2013
  • The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperatures ranging from room temperature to 2053 K and at strain rates ranging from $3.9{\times}10^{-5}s^{-1}$ to $4.9{\times}10^{-3}s^{-1}$. It was found that this material shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that the material is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength is observed. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a high temperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- and yield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of the deformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concluded that the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plastic deformation of the Mo phase.

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

Development of a multi-sensing technique for temperature and strain field of high-temperature using thermographic phosphors (온도감응형 인광물질을 이용한 온도장 및 열변형 동시 계측 기법 개발)

  • Im, Yujin;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.77-83
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) operates at high temperatures in range of 600-800℃. Since layers of SOFC are composed of different substances, different thermal expansion in SOFC can result in defects under high temperature conditions. For understanding relation between temperature field and the thermal deformation in SOFC, temperature and strain field were simultaneously estimated using thermographic phosphors by optical measurement. Temperature fields were obtained by the life-time method, and the temperature differences of one specimen was checked with thermocouple. The thermal deformation was estimated by digital image correlation (DIC) method with extracted phosphorescence images. To investigate the deformation accuracy of DIC measurement, thermographic phosphors were coated with and without grid pattern on aluminum surface. Simultaneous measurement of temperature fields and thermal deformation were carried out for YSZ. This study will be helpful to multi-sensing of temperature field and thermal deformation on SOFC cells.

Effect of Strain Rate on Microstructure Formation Behaviors of AZ80 Magnesium Alloy During High-temperature Deformation (고온변형 중의 AZ80 마그네슘 합금의 미세조직 형성 거동에 미치는 변형속도의 영향)

  • Park, Minsoo;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.180-184
    • /
    • 2020
  • The crystallographic texture plays an important role in both the plastic deformation and the macroscopic anisotropy of magnesium alloys. In previous study for AZ80 magnesium alloy, it was found that the main texture components of the textures vary with the deformation conditions at high temperatures. Also, the basal texture was formed at stress of more than 15-20 MPa and the non-basal texture was formed at stress of less than 15-20 MPa. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature (stress of 15-20 MPa). The uniaxial compression deformation is performed at temperature of 723 K and strain rate 3.0 × 10-3s-1, with a strain range of between -0.4 and -1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the main component of texture and its development vary depending on deformation condition of this study.

Effect of C/Ti Atom Ratio on the Deformation Behavior of TiCχ Grown by FZ Method at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.373-378
    • /
    • 2013
  • In order to clarify the effect of C/Ti atom ratios(${\chi}$) on the deformation behavior of $TiC_{\chi}$ at high temperature, single crystals having a wide range of ${\chi}$, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273 K and in a strain rate range of $1.9{\times}10^{-4}{\sim}5.9{\times}10^{-3}s^{-1}$. Before testing, $TiC_{\chi}$ single crystals were grown by the FZ method in a He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the lattice parameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observed is the ${\chi}$-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transition temperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation. The shape of stress-strain curves of $TiC_{0.96}$, $TiC_{0.85}$ and $TiC_{0.56}$ is seen to be less dependent on ${\chi}$, the work hardening rate after the softening is slightly higher in $TiC_{0.96}$ than in $TiC_{0.85}$ and $TiC_{0.56}$. As ${\chi}$ decreases the work softening becomes less evident and the transition temperature where the work softening disappears, shifts to a lower temperature. The ${\tau}_c$ decreases monotonously with decreasing ${\chi}$ in a range of ${\chi}$ from 0.86 to 0.96. The transition temperature where the deformation mechanism changes shifts to a lower temperature as ${\chi}$ decreases. The activation energy for deformation in the low temperature region also decreased monotonously as ${\chi}$ decreased. The deformation in this temperature region is thought to be governed by the Peierls mechanism.

Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.398-402
    • /
    • 2015
  • Fundamental studies of microstructural changes and high temperature deformation of titanium aluminide (TiAl) were conducted from the view point of the effect of Al content in order to develop the manufacturing process of TiAl. Microstructures in an as cast state consisted mainly of lamellar structure irrespective of Al content. By homogenization at 1473 K, the microstructures of Ti-49Al and Ti-51Al were transformed into an equiaxial structure which was composed of ${\gamma}$-TiAl, while the lamellar structure that was observed in Ti-46Al and Ti-47Al was much more stable. We found that the reduction of Al content suppressed the formation of equiaxial grains and resulted in a microstructure of only a lamellar structure. On Ti-49Al and Ti-51Al, dynamic recrystallization occurred during high temperature deformation, and the microstructure was transformed into a fine equiaxial one, while the microstructures of Ti-46Al and Ti-47Al contained few recrystallized grains and consisted mainly of a deformed lamellar structure. We observed that on the low-Al alloys the lamellar structure under hard mode deformation conditions deformed as kink observed B2-NiAl. High temperature deformation characteristics of TiAl were strongly affected by Al content. An increase of Al content resulted in a decrease of peak stress and activation energy for plastic deformation and an increase of the recrystallization ratio in TiAl.

A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy ($\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구)

  • Kim J. H.;Ha T. K.;Chang Y. W.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF

A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels (분무주조 고속도공구강의 고온변형 거동에 관한 연구)

  • Ha, T.K.;Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF