• Title/Summary/Keyword: High-temperature Combustion Flame

Search Result 293, Processing Time 0.034 seconds

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

A Study on In-Cylinder Measurement of Flame Temperature and Soot Distribution in D.I. Diesel Engine Using Tow-Color Method (이색법을 이용한 직접 분사식 디젤엔진 실린더내의 화염 분도 및 Soot 분포 측정에 관한 연구)

  • 박정규;정수훈;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.42-53
    • /
    • 1999
  • Two dimensional flame temperature and KL value distribution from the luminous flame containing soot in a DI diesel engine were measured by the tow-color method using tow different wavelengths of the flame image. The combustion chamber of a DI diesel engine was visualized by elongating the piston and cylinder and the flame in the combustion chamber was photographed on a nega-color film using a high speed camera. In this study, color CCD camera was used to digitize the three color density of the film exposed to the flame and standard lamp . The accuracy of the measuring method depends on the calibration line of film made from a high temperature standard tungsten lamp. The formation and oxidization of soot in the diesel engine were studied by observing measured time history of KL factor and flame temperature . Also , effects of various shapes of combustion chamber and fuel injection on flame temperature. Also, effects of various shapes of combustion chamber and fuel injection on flame temperature and KL value distribution were examined.

  • PDF

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료의 분무 연소특성에 관한 실험적 연구)

  • Park, Min-Chul;Kim, Dong-Il;Oh, Sang-Hun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • An experimental study has been carried on high-preheated temperature air combustion. The flames with high-preheated temperature air combustion turned out to be both temporally and spatially much more stable and homogeneous than these with room-temperature combustion air. The global flame feature showed a range of flame colors (yellow, blue, blurish-green) according to the flame conditions. A low level of NOx along with low level of CO has been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on the preheated temperature and the oxygen concentration of air.

  • PDF

Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level (예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame (대향류 확산화염의 고온공기 연소특성에 관한 수치해석)

  • Cho, Eun Seong;Kobayashi, Hideaki;Chung, Suk Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition (부분 예혼합 압축착화 조건에서 디젤분무의 화염특성)

  • Bang, Joong Cheol;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.