• 제목/요약/키워드: High-spin Fe(III)

검색결과 9건 처리시간 0.03초

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

A Novel Iron(III) Complex with a Tridentate Ligand as a Functional Model for Catechol Dioxygenases: Properties and Reactivity of [Fe(BBA)DBC]$ClO_4$

  • 윤성호;이호진;이강봉
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.923-928
    • /
    • 2000
  • [FeIII(BBA)DBC]ClO4 as a new functional model for catechol dioxygenases has been synthesized, where BBA is a bis(benzimidazolyl-2-methyl)amine and DBC is a 3,5-di-tert-butylcatecholate dianion.The BBA complex has a structuralfeature that iron cent er has a five-coordinate geometry similar to that of catechol dioxygenase-substrate complex.The BBA complex exhibits strong absorptionbands at 560 and 820 nm in CH3CN which are assigned to catecholate to Fe(III) charge transfer transitions. It also exhibits EPR signals at g = 9.3 and 4.3 which are typical values for the high-spin FeIII (S = 5/2) complex with rhombicsymmetry. Interestingly, the BBA complex reacts with O2 within an hour to afford intradiol cleavage (35%) and extradiol cleavage (60%) products. Surprisingly, a green color intermediate is observed during the oxygenation process of the BBA com-plex in CH3CN. This green intermediate shows a broad isotropic EPR signal at g = 2.0. Based on the variable temperature EPR study, this isotropic signalmight be originated from the [Fe(III)-peroxo-catecholate] species havinglow-spin FeIII center, not from the simple organic radical. Consequently,it allows O2 to bind to iron cen-ter forming the Fe(III)-superoxide species that converts to the Fe(III)-peroxide intermediate. These present data can lead us tosuggest that the oxygen activation mechanism take place for the oxidative cleavingcatechols of the five-coordinate model systems for catechol dioxygenases.

Synthesis and Characterization of Mononuclear Octahedral Fe(III) Complex Containing a Biomimetic Tripodal Ligand, N-(Benzimidazol-2-ylmethyl)iminodiacetic Acid

  • Moon, Do-Hyun;Kim, Jung-hyun;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1597-1600
    • /
    • 2006
  • The mononuclear iron complex 1, $Fe^{III}$(Hbida)Cl($H_2O$), was synthesized using a tripodal tetradentate ligand, N-(benzimidazol-2-ylmethyl)iminodiacetic acid (H3bida), which has two carboxylate groups, one benzimida- zoyl group, and one tertiary amine where it serves as a tetradentate chelating ligand for the octahedral Fe(III) ion. The four equatorial positions of the octahedral complex are occupied by two monodentate carboxylates, a benzimidazole nitrogen, and an oxygen of a water molecule. One of the axial positions is occupied by an apical nitrogen of the Hbida and the other by a chloride anion. The mononuclear octahedral complex 1 mimics the geometry of the key intermediate structure of the catalytic reaction cycle proposed for the FeSODs, which is a distorted octahedral geometry with three histidyl imidazoles, an aspartyl carboxylate, a superoxide anion, and a water molecule. The redox potential of complex 1, $E_{1/2}$ is -0.11V vs. Ag/AgCl (0.12 V vs. NHE), which is slightly lower than those reported for the most FeSODs. The magnetic susceptibility of complex 1 at room temperature is 5.83 $\mu$B which is close to that of the spin only value, 5.92 $\mu$B of high-spin d5 Fe(III).

A New Model for the Reduced Form of Purple Acid Phosphatase: Structure and Properties of $[Fe_2BPLMP(OAc)_2](BPh_4)_2$

  • 임선화;이진호;이강봉;강성주;허남휘;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.654-660
    • /
    • 1998
  • $[Fe^{II}Fe^{III}BPLMP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amino) methyl]-4-methylphenol (HBPLMP). Complex I has been characterized by X-ray diffraction method as having (μ-phenoxo)bis(acetato)diiron core. Complex 1 was crystallized in the monoclinic space group C2/c with the following cell parameters: a=41.620(6) Å, b=14.020(3) Å, c=27.007(4) Å, β=90.60(2)°, and Z=8. The iron centers in the complex 1 are ordered as indicated by the difference in the Fe-O bond lengths which match well with typical $Fe^{III}-O\; and\; Fe^{II}-O$ bond lengths. Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electochemical methods. Complex 1 exhibits strong bands at 592 nm, 1380 nm in $CH_3CN$ (ε = 1.0 × 103 , 3.0 × 102). These are assigned to $phenolate-to-Fe^{III}$ and intervalence charge-transfer transitions, respectively. Its NMR spectrum exhibits sharp isotropically shifted resonances, which number half of those expected for a valence-trapped species, indicating that electron transfer between $Fe^{II}\;and\;Fe^{III}$ centers is faster than NMR time scale. This complex undergoes quasireversible one-electron redox processes. The $Fe^{III}_2/Fe^{II}Fe^{III}\;and\;Fe^{II}Fe^{III}/Fe^{II}_2$ redox couples are at 0.655 and -0.085 V vs SCE, respectively. It has $K_{comp}=3.3{\times}10^{12}$ representing that BPLMP/bis(acetate) ligand combination stabilizes a mixed-valence $Fe^{II}Fe^{III}$ complex in the air. Complex 1 exhibits a broad EPR signal centered near g=1.55 which is a characteristic feature of the antiferromagnetically coupled high-spin $Fe^{II}Fe^{III}$ system $(S_{total}=1/2)$. This is consistent with the magnetic susceptibility study showing the weak antiferromagnetic coupling $(J= - 4.6\;cm^{-1},\; H= - 2JS_1{\cdot}S2)$ between $Fe^{II}\; and \;Fe^{III}$center.

Synthesis and Characterization of the Mixed-valence $[Fe^{II}Fe^{III}BPLNP(OAc)_2](BPh_4)_2$ Complex As a Model for the Reduced Form of the Purple Acid Phosphatase

  • 이재승;;이호진;이강봉;허남회
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.969-972
    • /
    • 2000
  • [Fe II Fe III $BPLNP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)ami-no)methyl]-4-nitrophenol (HBPLNP) . Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electrochemical methods. Complex 1 exhibits two strong bands at 498 nm $(\varepsilon=$ 2.6 ${\times}10^3M-^1cm-^1)$ and 1363 nm $(\varepsilon=$ 5.7 ${\times}10^2M-^1cm-^1)$ in $CH_3CN.$ These are assigned to phenolate-to-FeIII and intervalence charge-transfer transitions, respectively. NMR spectrum of complex 1 exhibits sharp isotropically shifted resonances, which number is half of those expected for a valence-trapped species, indicating that electron transfer between FeⅡ and FeⅢ centers is faster than NMR time scale at room temperature. Complex 1 undergoes quasireversible one-electron redox processes. The $FeIII_2/FeIIFeIII$ and $FeIIFeIII/FeII_2$ redox couples are at 0.807 and 0.167 V ver-sus SCE, respectively. It has Kcomp = 5.9 ${\times}$10 1s(acetato) ligand combination sta-bilizes a mixed-valence FeIIFeIII complex in the air. Interestingly, complex 1 exhibits intense EPR signals at g = 8.56, 5.45, 4.30 corresponding to mononuclear high-spin FeⅢ species, which suggest a very weak magnetic coupling between the iron centers. Magnetic susceptibility study shows that there is a very weak antiferromag-netic coupling (J = $-0.78cm-^1$, H = $-2JS_1${\times}$S_2)$ between FeII and FeIII centers. Thus, we can suggest that complex 1 has a very weak antiferromagnetic coupling between the iron centers due to the electronic effect of the nitro group in the bridging phenolate ligand.

14N Mines Pulsed-ENDOR of Proximal Histidine and Heme of Aquometmyoglobin and Fluormetmyoglobin

  • Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1769-1772
    • /
    • 2002
  • Previous $^{19}F\;and\;^{1,2}H$ electron-nuclear double resonance (ENDOR) study of fluorometmyoglobin (MbF) in frozen-solution state provided sensitive tools sensing subtle structural changes of the heme that are not obtainable from X-ray. [Fann et al., J. Am. Chem. Soc. 1995, 117, 6019] Because of the intrinsic inhomogeneouse EPR line broadening effect of MbF in frozen-solution state, detection of the intrinsic inhomogeneouse EPR line broadening effect of MbF in frozen-solution state, detection of the electronic and geometrical changes of the heme ring itself and the proximal histidine by using $^{14}N$ CW ENDOR was interfered. In the present study, hyperfine-sensitive $^{14}N$ Mims ENDOR technique of pulsed-EPR was employed to probe the changes. With two different $\tau$ values of 128 and 196 ns, $^{14}N$ ENDOR signals of the heme and proximal histidine were completely resolved at $g'_{II}(=g_e=2)$. This study present that X-band $^{14}N$ Mims ENDOR sequence can sensitively detect the small changes of the spin densities and p orbital populations of the proximal and the heme nitrogens, caused by ligand and pH variation of the distal site.

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF