• Title/Summary/Keyword: High-speed steel

Search Result 783, Processing Time 0.025 seconds

Evaluation of Tool Wear of P/M High Speed Steel Flat Endmill (분말 고속도공구강 평엔드밀의 공구마멸 평가)

  • Jung, Ha-Seung;Ko, Tae-Jo;Kim, Hee-Sool;Bae, Jong-Soo;Kim, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.154-160
    • /
    • 2002
  • Powder metallurgy(P/M) process has been used for the production of high performance high-speed steels. P/M high speed steel has more uniform and fine microstructure than those of conventional wrought products. Therefore, it offers distinct advantages over conventional tool steels. The superior uniformity of composition and fine microstrucure lead to excellent toughness and less distortion during heat treatment, which in turn can reduce total grinding costs and provides other benefits, such as uniform hardness and increased tool life. From these reasons, milling, hole machining, broaching, and gear manufacturing tools are major applications of P/M high-speed steels. In this research, we evaluated tool wear of flat endmill which is made of P/M high-speed steel from the view point of cutting tool performance.

Improvement of Productivity for the high carbon steel wire(0.75wt%C) through the Superhigh Speed Drawing (초고속 신선을 통한 고탄소강(0.75wt%C) 선재의 생산성 향상에 관한 연구)

  • Lee, Sang-Kon;Kim, Byung-Min;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1632-1636
    • /
    • 2007
  • Generally, fine high carbon steel wire is produced using a multi-pass drawing process with speeds over 1000 m/min. The productivity of the wire drawing mainly depends on achieving the highest drawing speed without breaking the wire. In the multi-pass drawing, as the final drawing speed increases, the temperature rises several hundred Celsius. High temperature of wire increases the brittleness and leads to breaks. The objective of this study is to design pass schedule and wire drawing machine for superhigh speed. In the drawing experiment, it was possible to increase the productivity through the increase in final speed from 1100 m/min to 2000 m/min.

  • PDF

A Study on the Cutting Surfaces in CNC Plasma Cutting of high tensile steel plate (고장력 강판의 CNC Plasma 절단시 절단면에 관한 연구)

  • 김인철;김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.149-154
    • /
    • 2003
  • The cutting tests of high tensile steel plate(AH36) were carried out using CNC plasma arc cutting machine. Both top and bottom width of kerf and the surface roughness(Ra, Rmax) of cut surface are measured under various cutting conditions such as cutting speed, steel plate thickness, etc. In the CNC plasma arc cutting, the surface roughness decreases as cutting speed increases. The hardness is high up to 4mm depth from the cutting surface. In the cutting speed 1300~2100mm/min, the ratio of proper kerf width(Wt/Wb) is around 2.6. Through the series the series of experiments, the satisfactory cutting conditions of high tensile steel plate were found.

  • PDF

A Study on Prediction of Cutting Temperature in Flank Face ar High Speed Steel (고속도강공구의 플랭크면 절삭온도 예측에 관한 연구)

  • 전태옥;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Temperature distribution on flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

  • PDF

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

FEM Analysis of Blanking of Mild Steel Sheet at Various Punch Speeds (연강 판재의 속도에 따른 블랭킹의 유한요소해석)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.458-461
    • /
    • 2016
  • In this study, a finite element analysis for high-speed blanking of mild steel is performed. A thermomechanically coupled simulation model of a blanking process was developed using ABAQUS/Explicit. Through a simulation of the high-speed blanking process of mild steel, the influence of the punch speed, tool edge radius, and work material thickness on the development of the plastic heat and punch load were studied. The results of the study revealed that a higher punch speed caused thermal softening of the work material and decreased the punch load. Decreasing tool edge radius could help reduce the punch load. In addition, the results of the study revealed that the thermal softening effect was more dominant in the blanking of a mild steel sheet with a greater thickness as compared to that in the blanking of a mild steel sheet with a lower thickness.

Corrosion Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식 피로신뢰성 기반 생애주기비용 분석)

  • Cho, Hyo-Nam;Jeon, Hong-Min;Sun, Jong-Wan;Youn, Man-Keun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.107-113
    • /
    • 2008
  • As it recently appears that LCC (Life Cycle Cost) analysis may be considered as an essential method for economic evaluation of infrastructures. Many researches have been made to assess LCC of each facility based on reasonable methods. However, expected maintenance repair cost must be reasonably estimated to enhance the reliability of LCC analysis through systematic and rational methods. This study is intended to propose a rational approach to reliability-based LCC analysis of high-speed railway steel bridges considering lifetime corrosion and fatigue damage. However in Korea, since high speed railway steel bridges are only recently constructed, no direct statistical data are available for the account of the maintenance cost and thus their maintenance characteristics are not clear yet. In this paper, for the assessment of expected maintenance/repair cost, the fatigue system reliability analysis incorporating the corrosion effect is proposed by considering the corrosion and fatigue damage using measured data of high speed railway steel bridges. A model proposed by Rahgozar, of at for fatigue notch factor considering the corrosion effect is used in order to incorporate the corrosion effect into the fatigue strength reduction and S-N curve. Finally, the effectiveness of LCC model proposed for high-speed railway steel bridges is demonstrated by a numerical example.

Analysis of Wire/Bar Rolling Process of High Speed Steel for Prevention of Center Fusion (고속도강 선.봉재의 중심부 용융현상방지를 위한 압연공정 해석)

  • Lee, S.Y.;Jeong, H.T.;Ha, T.K.;Jung, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.318-321
    • /
    • 2007
  • The temperature distribution of high speed tool steel wire/bar during high speed hot rolling procedures has been studied in this study. The tool steels wire/bar show severe temperature gradient during rolling procedures and the temperature of center part much higher than that of the surface. This temperature gradient accumulated after every rolling procedure and the center of rolled wire/bar could be remelt in a certain stage to cause inside defects. In the present study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, has been discussed to prevent the temperature increases of center wire/bar.

  • PDF

The Effects of Niobium on Sliding Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 Nb의 영향)

  • 이한영;배종수;김용진
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • In order to evaluate the effect of Nb on wear properties of high speed steel(HSS) by powder metallurgy, niobium-alloyed HSS have been prepared by adding 0%, 1%, 3% and 5%Nb to HSS of 6%W-5%Mo-4 %Cr-5%V-5%Co. Sliding wear tests were conducted at various sliding speed conditions under the constant pressure using a pin-on-disc type machine. The results of this study show that the wear resistance of HSS by powder metallurgy was increased by the addition of Nb within the range of sliding speed used in this experimental study. However, the amount of Nb did not improve the wear resistance. It may be due to the thermal stability of carbide and high temperature properties of the matrix containing Nb comparing to that without Nb.

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.