• Title/Summary/Keyword: High-speed spinning

Search Result 71, Processing Time 0.034 seconds

A Study on the Rotating Ring Using Air Bearing in Yarn Manufacturing Process (방적공정에 있어서 공기 베어링을 이용한 회전링에 관한 연구)

  • Jang, Seung-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.622-630
    • /
    • 2010
  • The increase of the spindle speed to enhance the productivity in ring spinning processes has been limited by yarn tension and heat generation of the traveller/ring. The main causes of yarn tension are 1) the force added directly to the yarn by the rotation of the spindle and 2) the centrifugal force exerted by the yarn balloon generated by traveller rotation. The dominant causes of heat generation are 1) the friction between the ring and traveller and 2) the friction between the traveller and yarn. These factors cause yarn end-breaks and heat damage. In the case of the staple yarn manufacturing process for PET (polyester) and nylon (a heat plasticity material), the rotational speed of the ring spinning system has deteriorated to 10,000rpm. The objective of this study was to develop a rotating ring which has dynamic stability, high productivity and a simple structure to overcome the limitations of the conventional fixed ring/traveller system. The results of this study revealed that the spinning tension could be reduced by 67.8% using the newly developed rotating ring.

Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning (현무암의 용융특성과 연속섬유 방사 연구)

  • Park, Hye-Jung;Park, Sun-Min;Lee, Jae-Won;Roh, Gwang-Chul;Kim, Jae-Keun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Basaltic fiber was prepared by continuous spinning process from Jeju Pyosun raw basalt materials. First, for confirming the melting characterization of basalt, basalt raw material put into Pt crucible and melted up to $1550^{\circ}C$ then quenched by dropping it into water. After quenching, the optimum fiber spinning conditions were investigated by measurement and analysis of XRD, TMA, high temperature viscosity, high temperature conductivity and high temperature microscope. The optimum spinning temperature and viscosity for preparation of continuous filament fiber were $1264^{\circ}C$ and $10^{2.8}$ poise at $1264^{\circ}C$, respectively. Properties of prepared spinning fiber were confirmed by tensile strength, FE-SEM, heat resisting test and others. The tensile strength of fiber prepared by spinning conditions of the bushing temperature $1240^{\circ}C$ and winder speed 4600rpm was 3660MPa.

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Experimental Study on Spin Coated Thin Cover Layer for High Numerical Aperture Optical Disc

  • Dohoon Chang;Myongdo Ro;Duseop Yoon;Park, Insik;Dongho Shin;Kim, Jinhwan
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.313-318
    • /
    • 2001
  • The present study relates to a method of manufacturing 100$\mu\textrm{m}$ thick cover layer for the high density digital versatile disc system (HD-DVD), which uses a high numerical aperture of 0.85 at 405 nm wavelength. Spin coating technique was investigated as means for manufacturing the cover layer within sufficient margins of thickness variation and with good mechanical properties including small radial and tangential tilts. The influence of processing variables such as spinning speed, spinning time, and dispensing position was investigated. The effect of viscosity of UV-curable resin was also investigated.

  • PDF

Preparation of Poly(vinyl alcohol)/polypropylene Nano-filter by High Speed Centrifugal Solution Spinning (초고속 용액 원심방사를 이용한 폴리비닐알코올/폴리프로필렌 나노필터 제조)

  • Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Kim, Ki Young;Lee, Sang Jun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • Centrifugal spinning is an emerging technique for fabricating micro-to-nano-fibers in recent years. To obtain fibers with the desired size and morphology, it is necessary to configure and optimize the parameters used in centrifugal spinning. In this study, it was controlled by changing the solution's concentration (7.5, 10, and 12.5 wt.%) and disk's rotational velocity (6,000, 8,000, and 10,000 rpm) to prepare centrifugal spun nano-filter. The morphological property, air permeability, and dust collection efficiency of the PVA/PP bi-layer nanoweb prepared by centrifugal spun PVA on the PP micron nonwoven substrate are studied using a field emission scanning electron microscope, an air permeability tester, and a filter tester equipment, and the analysis results indicate that it is suitable as a nano-filter when the concentration of PVA solution is 10 wt.% and the rotational velocity of the disk is 8,000 rpm. The resultant reduced diameter and uniform fibers also proved that an excellent dust collection efficiency filter could be made.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF