• Title/Summary/Keyword: High-speed spindle system

Search Result 189, Processing Time 0.034 seconds

A Study on Vibration Reduction of an Optical Disk Drive with the Misaligned Axis of Rotation (회전축 정렬불량 광디스크 드라이브의 진동 저감에 관한 연구)

  • 강봉진;정태은;신효철;오주환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.122-130
    • /
    • 2004
  • In a high-speed and wide operating field optical disk drive, the vibration problem is one of the most important factors to be considered for reliable performance. And a disk misaligned with axis of rotation is a major source of vibration in optical disk drive. Furthermore, this vibration disturbance of the disk spindle system causes failure in the reading and writing process. So to solve this vibration problem, the vibration absorber using rubber mount has been introduced in recent years. In this paper, we have analyzed the simple optical disk drive model with dynamic vibration absorber through dynamic analysis of 12-dof by Recurdyn program and obtained optimal mass and frequency ratios of dynamic vibration absorber of dynamic vibration absorber and the optimal frequency ratio.

Friction, Wear and Adhesion of HVOF Coating of Co-alloy Powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Song, Ki-Oh;Joo, Yun-Kon;Fang, Wei;Zhang, Shihong;Youn, Suk-Jo;Chun, Hui-Gon;Hwang, Soon-Young
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.61-62
    • /
    • 2007
  • HVOF thermal spray coating of micron size Co-alloy powder has been studied for the durability improvement of high velocity spindle (HVS). Optimal coating process of this system for the best surface properties is hydrogen flow rate 75 FMR, oxygen flow rate 38-42 FMR, feed rate 30 g/min at spray distance 5 inch. Friction coefficient (FC) and wear trace (WT) decrease increasing coating surface temperature from 25$^{\circ}$C to 538$^{\circ}$C due to the higher lubricant effects of the oxides at the higher temperature. At the study of adhesion of T800 coating on a light metal alloy Ti-6Al-4V (Ti64) tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64/T800 are 8,740 psi and near middle of T800 coating respectively. This shows that adhesion of Ti64/T800 is higher than the cohesion strength (8,740 psi) of T800 coating. Therefore T800 coating is strongly advisable for the surface coating on HVS such as high speed air-bearing spindle.

  • PDF

A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine (자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

A Study on Vibration Detection Method of Disc by Differential Amplifying Optical Power in Optical Disc Media (광 디스크 장치에서 광량 차동증폭에 의한 디스크 진동 검출 방안에 관한 연구)

  • 김진선;곽경섭
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.215-221
    • /
    • 2002
  • In high speed optical disc devices, the vibration caused by unbalanced displacement leads the focus and tracking servo systems to be unstable, and increases the data search time. In this paper, we propose a new scheme to solve the unbalanced displacement problem. The proposed method detects the unbalanced rate by differential amplifying optical power received at photo diode and converts it into an electrical signal. controlling the speed of spindle motor, according to the detected unbalanced rate, makes it possible to improve the performance of tracking and data searching tasks. Also, we analyze the dynamic characteristics of focus and tracking servo systems in high speed mode and provide the firmware and hardware architecture that the proposed method can be installed as an add-on- module in the existing system.

  • PDF

Development of Rafter Processing Machine and Simulation Verification (서까래 가공기 개발 및 시뮬레이션 검증)

  • Hong, Sung-Min;Ullah, Furqan;Lee, Gun-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • Han-ok (the Korean traditional house) is famous for its beauty and healthful aspects. However, its construction cost is too high because of the manual process of parts such as rafter, timber, etc. These days, many people want to build a modernized Korean traditional house at a low cost. In order to do so, the rafter machining process is required to be automatized using a CNC machine. It is also observed that, generally the timber does not have a uniform shape. Therefore, it is also needed to examine the timber shape before starting its processing. This paper presents the concept design of the rafter processing CNC machine, and a 3D laser scanning system. The laser scanner is developed to acquire 3D details of the timber shape. Furthermore, the results of simulated experiments are presented to investigate surface roughness during the machining process of the timber. Since cutting parameters largely influence on surface roughness and cusps formation, it is needed to achieve optimal machining parameters. Several experiments were carried out changing cutting parameters such as cutting tool diameter, feed-rate, and spindle speed.

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

Effect of Processing Parameters in Surface Machining of Plastic Materials (플라스틱 소재의 표면가공 중 공정조건의 영향)

  • Han, Chang Mo;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.