• Title/Summary/Keyword: High-speed spindle bearing

Search Result 151, Processing Time 0.028 seconds

A Study on the Oil-Jet Lubrication Characteristics of a Motor-Integrated High-Speed Spindle System with $\phi$65mm$\times$25,000rpm (오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 윤활특성에 관한 연구)

  • 이용희;김석일;김태형;박보선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.59-64
    • /
    • 1998
  • In this study, a motor-integrated high-speed spindle system with $\psi$65mm $\times$ 25,000rpm is developed by introducing the oil-jet lubrication method, ceramic angular contact ball bearings, a built-in motor and so on. And oil-jet lubrication experiments fur evaluating the system performance are performed under various operation conditions. Especially, in order to establish the oillet lubrication conditions related to the development of a high-speed spindle system, the effects of oil supply rate and rotational spindle speed are investigated on the temperature rise, temperature distribution, motor current and so on.

  • PDF

Thermal Characteristics Analysis of 30,000rpm High Speed Spindle (30,000rpm 고속 주축의 열특성 분석)

  • Lim, Jeong-Suk;Yu, Ki-Han;Chung, Won-Jee;Kim, Soo-Tae;Lee, Jung-Hwan;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.120-126
    • /
    • 2009
  • Thermal displacement of high speed spindle is very important problem to be solved. To solve heat generation and thermal displacement problems that influence on the product accuracy, it is very important to predict thermal characteristics of the spindle and it is positively necessary to select the conditions of cooling, flow rate and preload of bearings. In this paper, 30,000rpm($1.455{\times}10^6DmN$) spindle was designed and produced. The analysis of thermal deformation for heat generation of inner spindle was carried out using commercial program $ANSYS^{(R)}$ and the result was compared with measured data using $LabVIEW^{(R)}$ and SGXI-1600, 1125 and 1126 module. Temperature distribution and thermal displacement according to spindle speed are measured. Using this method, it is possible to predict and to improve thermal characteristic of high speed spindle by control spindle speed, bearing preload and cooling rate.

Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System (공기냉각 모터내장형 주축계의 열거동에 관한 연구)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF

A Characteristic of High Speed Ball End Milling Machining using The Air-Spindle (공기 정압 스핀들을 이용한 고속 볼엔드밀링 가공특성 평가)

  • 이종렬;안선일;안지훈;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.922-925
    • /
    • 2000
  • Generally, the machining accuracy in ball end milling directly depends on the rotational accuracy affected by the spindle speeds. The effects of spindle speeds for rotational accuracy in the high speed regions are more dominant than those in the low speed regions. This paper will investigate effects that the Increased speed affects on the rotational error according to the increase of a rotational speed and machining characteristics of the high speed ball-end milling in various rotational speeds and on various materials by using the high speed air-bearing spindle.

  • PDF

Selecting Position of Bearings to Improve Dynamic Characteristics of A High-speed Milling Spindle (고속 주축의 진동 특성 향상을 위한 베어링의 위치 선정)

  • Lim J.S.;Hwang Y.K.;Lee W.C.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools. to improve tire machining flexibility of machine. tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In the spindle system design, it is very important to improve modal characteristics, and modal analysis is performed in the first place. Therefore in this paper, on the assumption that supporting bearings of spindle was selected most suitable condition, analyzed dynamic characteristics of a high-speed spindle according to its position. Optimal design was applicated to select most suitable position of bearings. Considered tile mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows the natural frequency of 1st bending mode of spindle.

  • PDF

Model Updating of High-Speed Spindle (초고속 스핀들의 모델 개선법)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In the design of modem rotating machinery, it is often necessary to increase the performance of rotor-bearing system. Since a critical speed range influences the performance and safety of the whole system, it should be necessary to constrain the critical speed and thus resonance response in design process to result in large vibration. Consequently the minimization of resonance response amplitudes within the operation range of the rotor system becomes the most primary design objective. In this paper, based on the assumption that the external shape of rotating-shaft, bearing supporting positions and etc, the natural frequency analysis of spindle is performed by ANSYS $10.0^{(R)}$ Optimum design is conducted using the RBF model.