• 제목/요약/키워드: High-speed propeller

검색결과 87건 처리시간 0.027초

대형 고속 선박용 프로펠러의 해수 중 피로강도에 관한 연구 (A Study on the Fatigue Strength of Propellers for High Speed and Large Ships in Sea Water)

  • 김종호;안재형;강낙훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.207-212
    • /
    • 2003
  • Recently there has been a remarkable increase in the number of high speed and large ships, and the high power involved for propulsion of above ships have brought high pitch ratio and high skew propeller. The recent tendency toward highly skewed propeller has increased the load on propeller blades and the fatigue strength of propeller blades has become the critical point in design of propellers for above ships. In this paper fatigue tests in sea water were carried out on propeller material of Ni-Al bronze. The stress and environmental conditions of the test were selected to be close to those of full size propellers in use. The effect of stress ratio, stress frequency, revolution number of propeller for above ships numbers and so on were discussed.

  • PDF

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • 제12권2호
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

트롤어선용 노즐 프로펠러 추진기 설계에 관한 연구 (A study on the design of nozzle propeller for trawler)

  • 정성재;홍진근;최종덕;김수호
    • 수산해양기술연구
    • /
    • 제44권3호
    • /
    • pp.239-249
    • /
    • 2008
  • Trawlers have to a sufficient towing force due to it's characteristics of the high performance. The newly constructed trawler with the conventional propellers shows the sufficient towing force, so that the propeller and engine are optimized. In the 1970s, many trawlers were imported from overseas by Korean fisheries industries. But the engine output degradation with year by year caused the trawlers to decrease the towing speed of the vessels. On the previous studies, the nozzle propeller had not so good efficiency with increasing of resistance in high-speed cruising operation over 15knots. But the trawling operation is just required the higher thrust and towing force, so that the nozzle propeller is very profitable for the it's effectiveness. A new nozzle propeller was designed for the 4,462G/T trawler, Dong-San, operated by Dongwon Industries Co., Ltd. to improve the towing speed, and the model tests were performed. The model ship and model propeller are preciously manufactured and used model tests in basin. The resistance test and propeller open water test were performed for the cases of the half and full loads. The required engine horse power and RPM were evaluated analytically by the speed-power curve, when the trawler was equipped with the nozzle propeller. The results of tests showed that the towing speed 4.85knots on the design load waterline requires the 200 engine RPM and 2,567ps in the delivered horsepower.

고속 프로펠러 블레이드 정적 구조 설계 및 시험 (The Static Structural Design and Test of High Speed Propeller Blade)

  • 박현범;최원
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구 (Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft)

  • 공창덕;이경선;박현범;최원
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.57-68
    • /
    • 2012
  • 본 연구에서는 한국의 차세대 중형항공기에 사용될 고속형 터보프롭 항공기용 고효율 복합재 프로펠러 블레이드의 설계를 수행하였다. 와류 이론과 블레이드 깃 요소 이론을 활용하여 기본 공력설계 및 성능 해석을 수행하였고 공력설계 결과는 상업용 전산유체해석 프로그램인 ANSYS를 이용한 해석을 통해 확인 되었다. 프로펠러 구조 설계 시 카본/에폭시 복합재료가 적용되었으며, 경량화와 구조 안정성 개선을 위하여 스킨-스파-폼 샌드위치 구조 형식를 채택하였다. 제안된 프로펠러 블레이드는 공력 및 구조 해석과 시제품 프로펠러 블레이드의 구조 시험을 통하여 높은 효율과 안전한 구조임이 검토되었다.

하이 스큐드 프로펠러의 피로강도에 관한 연구 (A Study on the Fatigue Strength of Highly Skewed Propeller)

  • 강낙훈;김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1131-1137
    • /
    • 2004
  • Recently there has been a remarkable increase in the number of high speed and large ships and the high power involved for propulsion of above ships has brought high pitch ratio and highly skewed propeller. The recent tendency toward highly skewed propeller has increased the load on propeller blades, and the fatigue strength of propeller blades has become the critical point in design of propellers for ships. In this paper the effect of stress ratio and skew angle on the fatigue strength of highly skewed propeller, the statistical inference on the total revolutions of highly skewed propeller for 20 years under normal sea going state. and so on have been discussed. On the basis of above discussions, the highly skewed propeller blade thicknesses by the rules of classification society and the standards of manufacturer in country were compared and reviewed.

인간동력 항공기용 프로펠러 성능해석 (Propeller Performance Analysis for Human Powered Aircraft)

  • 박부민
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.193-201
    • /
    • 2013
  • 프로펠러는 인간동력 항공기 추진시스템의 중요한 구성품이다. 높은 프로펠러 효율을 얻기 위하여 프로펠러는 큰 지름을 가지고 느리게 구동된다. 프로펠러는 인간동력 항공기용 프로펠러 설계 프로그램을 사용하여 설계되었다. 프로펠러의 피치는 지상에서 조정이 가능하다. 본 논문에서는 여러 가지 변수에 대하여 설계에 사용된 동일한 프로그램을 통하여 프로펠러의 성능 해석을 수행하였다. 또한, 파일롯의 체력이나 비행속도의 변화에 따른 탈 설계점 해석도 수행하였다. 설계된 프로펠러는 카본 복합재의 초경량 구조로 제작되어 총 950g의 무게로 제작되었다. 제작된 프로펠러는 아이언 버드에서의 지상 성능 시험을 통하여 속도 및 동력을 측정하고 튜닝을 수행하여 실기에 장착되어 최종적으로 291 m 비행에 성공하였다.

1600kW급 프로펠러 블레이드 공력설계 및 해석 (Aerodynamic Design and Analysis on 1600kW Class Propeller Blade)

  • 최원;김광해;원영수;이원중
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.19-24
    • /
    • 2012
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the turboprop aircraft. That is way Clark-Y airfoil which is used to conventional 1600kW class aircraft propeller is selected as a blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the propeller design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point of turboprop aircraft. The propeller design results indicate that is evaluated to be properly constructed, through analysis of propeller aerodynamic characteristics using the Meshless method and MRF, SM method.

고용량 경사류용 동력계를 이용한 프로펠러 단독시험 특성의 실험적 연구 (Experimental Study of the POW Characteristics using High-capacity Inclined-shaft Dynamometer)

  • 안종우;김기섭;박영하
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.168-174
    • /
    • 2019
  • In order to investigate Propeller Open Water (POW) characteristics for the high-speed propeller in Large Cavitation Tunnel (LCT), the high-capacity inclined-shaft dynamometer was designed and manufactured. Its measuring capacities of thrust and torque are ${\pm}2200N$ and ${\pm}120N-m$, respectively. The driving motor is directly connected to the propeller shaft. Inclined angle of the propeller shaft can be adjusted up to ${\pm}10^{\circ}$. As the pressure inside LCT can be adjusted in the range of 0.1~3.0bar, we can carry out the POW test at high Reynolds number (above $1.0{\times}10^6$) without propeller cavitation and the cavitation test in uniform flow. After the new dynamometer setup in LCT, the Reynolds number variation test and propeller open-water test were conducted at the inclined angle of $0^{\circ}$ and $6^{\circ}$. The present POW results of the new dynamometer are compared with those of the existing high-capacity dynamometer in LCT and of the dynamometer in the towing-tank. Through systematic model tests and comparison with their results, the performance of the new inclined-shaft dynamometer was verified. It is thought the POW test for the high-speed propeller should be better conducted at high Reynolds number.

공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선 (The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining)

  • 손황진;임은성;정윤교
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.