• Title/Summary/Keyword: High-speed imaging

Search Result 241, Processing Time 0.029 seconds

A Comparative Study of Vocal Fold Vibratory Behaviors Shown in the Phonation of the /i/ Vowel between Persons who Stutter and Persons with Muscle Tension Dysphonia Using High-Speed Digital Imaging (초고속 성대촬영기(High-Speed Digital Imaging)를 이용한 말더듬인과 근 긴장성 발성장애인의 /이/모음 발성 시 성대 진동 양상에 관한 비교 연구)

  • Jung, Hun;Ahn, Jong-Bok;Park, Jin-Hyaung;Choi, Byung-Heun;Kwon, Do-Ha
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • The purpose of this study was to use high-speed digital imaging (HSDI) to compare vocal vibratory behaviors of persons who stutter (PWS) and persons with muscle tension dysphonia (PMTD) for uttering the /i/ vowel in a bid to identify the characteristics of vocal fold vibratory behaviors of PWS. This study surveyed seven developmental PWSs and seven PMTDs. The findings of the study indicated the following: first, regarding the two groups' vocal fold vibratory behaviors, of seven PWSs, three were found to be close vocal tract (VC) and four were found to be combination vocal tract (VCB). Of the seven PMTDs, one was found to be VC, and the other six were found to be VCB. These results indicate that a voiceprint which is different from the open vocal tract (VO) found in normal groups in research conducted by Jung, et al. (2008b) appeared in both groups of this study. Even between the two groups, there is a difference in the voiceprint before vocalization. Second, a VKG analysis was conducted to identify the two groups' vocal cord contact quotient. As a result, the PWS group's vocal cord contact quotient changed gradually from an irregular one at the initial vocalization stage to a regular one. The PMTD group continued the tension at the initial vocalization. Putting together all of these results, there is a difference in vocal fold vibratory behaviors between PWSs and PMTDs when they speak. Thus, there was a difference in muscular tension between the two groups.

  • PDF

Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets (SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구)

  • Huh, H.K.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong;Li, Nan;Jia, Sen;Zhang, Xiaoliang;Li, Ye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.229-251
    • /
    • 2021
  • Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Pathological Vibratory patterns of the Vocal Folds Observed by the High Speed Digital Imaging System

  • Niimi, Seiji
    • Proceedings of the KSLP Conference
    • /
    • 1998.11a
    • /
    • pp.208-209
    • /
    • 1998
  • It is generally known that many cases of pathological rough voice are characterized not by simple random perturbations but by quasi-periodic perturbations in the speech wave. However, there are few studies on the characteristics of perturbations in vocal fold vibrations associated with this type of voice. We have been conducting studies of pathological vocal fold vibration using a high-speed digital image recording system developed by our institute, Compared to the ordinary high-speed-motion picture system, the present system is compact and simple to operate and thus, it suited for pathological data collection. (omitted)

  • PDF

Spaceborne High Speed Data Link Design for Multi-Mode SAR Image Data Transmission

  • Kwag, Young-Kil
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution because of the strict requirement far the real-time data transmission of the massive SAR data in a limited time of mission. In this paper, based on the data lint model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

CMOS binary image sensor with high-sensitivity metal-oxide semiconductor field-effect transistor-type photodetector for high-speed imaging

  • Jang, Juneyoung;Heo, Wonbin;Kong, Jaesung;Kim, Young-Mo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.295-299
    • /
    • 2021
  • In this study, we present a complementary metal-oxide-semiconductor (CMOS) binary image sensor. It can shoot an object rotating at a high-speed by using a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector. The GBT PMOSFET-type photodetector amplifies the photocurrent generated by light. Therefore, it is more sensitive than a standard N+/P-substrate photodetector. A binary operation is installed in a GBT PMOSFET-type photodetector with high-sensitivity characteristics, and the high-speed operation is verified by the output image. The binary operations circuit comprise a comparator and memory of 1- bit. Thus, the binary CMOS image sensor does not require an additional analog-to-digital converter. The binary CMOS image sensor is manufactured using a standard CMOS process, and its high- speed operation is verified experimentally.

Commercially Available High-Speed Cameras Connected with a Laryngoscope for Capturing the Laryngeal Images (상용화 된 고속카메라와 후두내시경을 이용한 성대촬영 방법의 소개)

  • Nam, Do-Hyun;Choi, Hong-Shik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.21 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • Background and Objectives : High-speed imaging can be useful in studies of linguistic and artistic singing styles, and laryngeal examination of patients with voice disorders, particularly in irregular vocal fold vibrations. In this study, we introduce new laryngeal imaging systems which are commercially available high speed cameras connected with a laryngoscope. Materials and Method : The laryngeal images were captured from three different types of cameras. First, the adapter was made to connect with laryngoscope and Casio EX-F1 to capture the images using $2{\times}150$ Watt Halogen light source (EndoSTROB) at speeds of 1,200 tps (frame per second)($336{\times}96$). Second, Phantom Miro ex4 was used to capture the digital laryngeal images using Xenon Nova light source 175 Watt (STORZ) at speeds of 1,920 fps ($512{\times}384$). Finally, laryngeal images were captured using MotionXtra N-4 with 250 Watt halogen lamp (Olympus CLH-250) light source at speeds of 2,000tps ($384{\times}400$) by connecting with laryngoscope. All images were transformed into the Kymograph using KIPS (Kay's image processing Software) of Kay Pentex Inc. Results: Casio EX-F1 was too small to adjust the focus and screen size was diminished once the images were captured despite of high resolution images. High quality of color images could be obtained with Phantom Miro ex4 whereas good black and white images from Motion Xtra N-4 Despite of some limitations of illumination problems, limited recording time capacity, and time consuming procedures in Phantom Miro ex4 and Motion Xtra N-4, those portable devices provided high resolution images. Conclusion : All those high speed cameras could capture the laryngeal images by connecting with laryngoscope. High resolution images were able to be captured at the fixed position under the good lightness. Accordingly, these techniques could be applicable to observe the vocal fold vibration properties in the clinical practice.

  • PDF