• Title/Summary/Keyword: High-speed extrusion

Search Result 54, Processing Time 0.037 seconds

The Precise Extrusion-Technical Development to Get Excellent Mechanical-property and Accurate Shape- Dimension (우수한 기계적 특성과 형상치수 확보를 위한 정밀 압출기술개발)

  • Lee, Hyun-Cheol;Lee, Kwang-Sik;Oh, Kae-Hee;Park, Sang-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.311-320
    • /
    • 2009
  • Most advanced countries are researching to apply light weight materials far rolling stock because weight reduction for railway body derives cost-saving, energy-saving, and high-speed. Likewise, current Korea rolling stock field makes arduous effects of weight-reduction, miniaturization, and high-efficiency to achieve a high-speed railway. Aluminum becomes suitable material for these projects because it is much lighter than steel or stainless. Manufacturing the railway car body by using the Aluminum is increasing because Aluminum is not bringing the corrosion by unique oxidation-passivate. Aluminum extrusion profile far railway body requires a high mechanical property, accurate shape dimension, and stable quality because the railway body is composed with many different kinds of extruded profiles. Therefore, it is necessary to research about Aluminum precision-extrusion technology to maintain exit temperature and die load. The goal of this project is applying the Aluminum extrusion profile to next-generation railway car body by developing the Aluminum extrusion profile according to precision-extrusion technology which may maintain isothermal exit temperature.

  • PDF

Extrusion Die Development of Interior & Exterior Parts for High Speed Train on Aluminum Alloys and Controls of Extrusion Conditions (고속전철 내·외장재용 알루미늄 합금의 압출 금형 개발 및 압출 조건의 제어)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.50-55
    • /
    • 2018
  • The important thing in extrusion technology is the design and production of molds. Appropriate design of the molds is essential for achieving the desired extrusion of molds at the same time to maximize the life of the molds and increase their efficiency. The extrusion temperature and extrusion speed are the main parameters at the time of extrusion. Different extrusion conditions should be added depending on the extrusion ratio, physical properties of the material, and type of extrusion. In this study, the extrusion process of various 6xxx series aluminum cast alloys for high speed train interior or exterior parts were investigated. The extruded die design was performed for the 6063, 6061, 6N01, 6005, 5083 and 6060 alloy profiles and an extrusion test was conducted. In addition, the extrusion conditions, such as extrusion pressure following as the billet temperature, extrusion temperature, and materials change, were analyzed. Although the 6063 aluminum alloy can be extruded at the lowest temperature and pressure, the 6061 alloy can be extruded at the highest temperature and pressure. From these results, the successful extruded products were manufactured from these established conditions.

Microstructure and Mechanical Properties of Very-high-speed Extruded Mg-Bi-Al-Mn Alloy (Mg-Bi-Al-Mn 초고속 마그네슘 압출재의 미세조직 및 기계적 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, a developed Mg-5Bi-2Al-0.4Mn (BAM520, wt%) alloy was successfully extruded at an extremely high speed of 70 m/min. Microstructural evolution during extrusion and the microstructural characteristics and tensile properties of the very-high-speed extruded BAM520 alloy were then investigated. The homogenized BAM520 billet contained only thermally stable Mg3Bi2 phase particles without any Mg17Al12 phase with a low melting temperature. Therefore, the BAM520 alloy exhibited excellent extrudability. The very-high-speed extruded BAM520 alloy had a completely recrystallized grain structure and a typical basal fiber texture. Despite the extremely high extrusion speed of 70 m/min, the extruded BAM520 alloy had a high ultimate tensile strength of 280 MPa due to combined strengthening effects of a small grain size, numerous fine Mg3Bi2 particles, and strong basal texture.

The Characteristics of Hot Hydrostatic Extrusion of AZ Magnesium Alloy (AZ계 마그네슘 합금의 열간 정수압 압출특성 연구)

  • Yoon, D.J.;You, B.S.;Lim, S.J.;Kim, E.Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.62-65
    • /
    • 2008
  • Extrusion characteristics of Mg alloys were studied experimentally. The Al-Zn-Mg alloys, AZ31, AZ6l, AZ80, and AZ91 were extruded with hot hydrostatic extrusion process. The hydrostatic process was efficient to reduce surface friction and extend steady state region in extrusion which made it more convenient to examine deformation behavior of the alloys avoiding the disturbance caused by temporary contact state between billet and die, and billet and container. High pressure was cooperative to expand forming limit of the alloys which were applied on the billet during the extrusion process. Extrusion limits were traced in temperature and extrusion speed domain with changing composition of the alloying elements. Effects of process parameters on extrusion load and microstructure evolution were investigated also.

  • PDF

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

Process Development of Variable Curvature Extrusion for Automotive Aluminum Bumper (자동차 알루미늄 범퍼의 가변 곡률 압출공정 개발)

  • Kim, Byung-Min;Jo, Young-June;Oh, Kae-Hee;Park, Sang-Woo;Lee, Sang-Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.327-332
    • /
    • 2008
  • The effectiveness of vehicle parts made through extrusion is in the limelight because of the advantages of high strength stiffness materials can be produced and the number of processes can be drastically reduced. Therefore, the parts should have sufficient stiffness and be lightweight enough to improve fuel efficiency. However, the application of extruded aluminum requires pre-bending technologies that can manufacture the complex designs profiles demanded by vehicle parts. The aim of this research is that the development of the variable curvature extrusion technology that can produce a variety of curvature. In order to produce a variable curvature, the guide transfer speed and transfer time should be controlled properly. The guide transfer speed and transfer time were examined by the theoretical analysis. A model was developed to simulate the deformation behaviors of extrusion and bending process from the symmetric bumper with range of radii from 1863mm to 2163mm. The theoretical analysis and FE analysis were verified through experimental method.

A Study on the Numerical Friction Model for Extrusion (압출성형을 위한 마찰수식 모델에 관한 연구)

  • Oh P. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.14-20
    • /
    • 2005
  • To carry out perfectly the forming analysis of the extruding products, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate analysis of the extrusion forming for the variation of pressure and velocity should be subjected. It is to develop the accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the extrusion. Therefore, the results should improve the accuracy, cause the energy saving for the extrusion and finally expand the applying areas of the results.

An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate (알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계)

  • 장창두;하윤석;조영천;신광복
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

The Effect of Extrusion Temperature and Die Angle on Mechanical Properties of $SiC_p$/2024Al Composites Fabricated by Powder Extrusion Method (분말압출법으로 제조된 $SiC_p$/2024Al 복합재료에 있어서 압출온도와 다이각이 기계적 성질에 미치는 영향)

  • 성병진
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • Effects of the extrusion temperature and die angle on the tensile properties of SiCIyAl composites in powder extrusion have been investigated. SiCP/Al composites were extruded at various extrusion temperatures (450, 500, $550^{\circ}C$) under the extrusion ratio of 25 : 1. The ram speed was maintained at 13 cm/min for all the extrusion conditions. The surface of the extruded rod appeared to be smooth without tearing at 450 and 50$0^{\circ}C$, whereas it was very rough due to tearing at $550^{\circ}C$. It was found that the tensile strength and elongation of the composites extruded at $500^{\circ}C$ are greater than those of composites extruded at $450^{\circ}C$ This is due to the easier plastic deformation of composite extruded at $500^{\circ}C$, compared with the composites extruded at $450^{\circ}C$. The effect of die angle was examined under 20=60, 120, $180^{\circ}$die angles at extrusion temperature of $500^{\circ}C$ under 25:1 extrusion ratio. The tensile strength of the composites extruded with 20=$60^{\circ}$approved to be higher than that of the composties extruded with 28 : 120 and $180^{\circ}$This is attributable to the higher extrusion pressure, which mixed composite powders could be densely consolidated at elevated temperatures, resulting from high friction force between billet and sliding surface of conical die.

  • PDF