• 제목/요약/키워드: High-speed Machining

검색결과 630건 처리시간 0.028초

고속가공기의 가공성 평가방법에 관한 연구 (A Study on the Evaluative Method of Workability For High Speed Machining)

  • 이춘만;류승표;황영수;정원지;정종윤;고태조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1858-1863
    • /
    • 2003
  • The properties of a machine tool greatly affect machining quality since a machine tool has large variance in its features. Machine tool makers want to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics of machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool. The specimen is machined with a high speed machine and the features of the machine are analyzed with test items. They are surface roughness, overshoot in axial movement, errors in circular movement, feeding with small movement, and compensational error. This work can improve usability for a machine tool in machining practice.

  • PDF

미세부품가공을 위한 소형 초고속에어스펀들 개발 (Development of Miniaturized High-Speed Air Spindle for Micro-Meso Components)

  • 이승준;신인동;최수창;김용우;이종렬;이득우
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.334-339
    • /
    • 2010
  • The development of high-speed spindle have been studied extensively for micro machining in advanced industrial countries. The research of miniaturized high-speed air spindle is important part which needs for the micro machining process of high quality. So, This study was to carry out results about design characteristics of miniaturized high-speed air spindle. We had designed 4type turbines and shaft. They were simulated in use the computer simulation programs. We made them as products. They measured RPM (revolutions per minute). As a result of experiments, there was a contrast among 4type Turbines. it reached 384,000rpm in 4.5bar of air pressure. And, We tried to compare the results of measurement whit the results of computer simulation.

기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구 (A study on automatic selection of optimal cutting condition on machining in view of economics)

  • 이길우;이용성
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

세장비(細長比)가 큰 가공 소재를 포함한 소형 고속 스핀들 시스템의 고유진동 특성 연구 (A study on natural vibration characteristics of small and high speed spindle system with a long work piece)

  • 이재훈;김무수;박성훈;이시복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.184-185
    • /
    • 2008
  • Modal analysis is an important and essential process in design of a high speed machining center. Generally, modal analysis of a built-in spindle system has not taken the work piece's shape and dimension into consideration. Since small and long work pieces influence greatly the natural frequency of the entire system, the high speed spindle system which continuously makes small machine parts by long work pieces for improvement of machining time has to consider the machining work pieces. Therefore frequency characteristics of the spindle system with long work pieces are studied in this paper.

  • PDF

엔드밀 정밀도 향상을 위한 주변기술 연구

  • 김경배;서천석;김영경;이용인;최영근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.450-455
    • /
    • 2002
  • Quality of endmill applied to high speed Machining can be classified in precision and tool life. Especially, Endmills are damaged easily when high speed machining are occurred vibration and deflection by thin and long shape of endmill, limitation of chip-pocket. Furthermore, Endmills are determined tool life by the quality of base material and the character of coating. This study have carried on research and analysis about grinding technique, circumference technique to improve precision that determine the quality of endmill. As the result of this study, that the technique is able to manufacture endmill applied to high speed Machining have been obtained.

  • PDF

밀링가공에서 표면거칠기에 대한 절삭인자의 정량적 분석과 예측모델에 관한 연구 (A Study on the Quantitative Analysis of Cutting Parameters and Prediction Model for Surface Roughness in Milling)

  • 장성민;강신길
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.125-130
    • /
    • 2017
  • In this study, the influence of various factors on surface roughness was investigated using the Taguchi experimental method through high-speed machining processing. Feed rate, pitch, tool diameter, and depth of cut are widely applied to high-speed machining conditions for mold production. Each of these factors was implemented and classified into three levels; then, after high speed machining, surface roughness was measured, the S/N ratio was analyzed, and the influence on the surface roughness of control factors was analyzed quantitatively by ANOVA. Using this information, a mathematical model for predicting surface roughness was derived from multiple regression analysis. This mathematical model enables the surface roughness value after high-speed machining to be predicted at the production stage, before machining, for a wide range of machining conditions.

고속가공을 이용한 시작금형 및 시작품의 쾌속제작 (Rapid Manufacturing of Trial Molds and Prototypes by High Speed Machining)

  • 신보성;양동열;최두선;제태진;이응숙;황경현;이종현
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.124-129
    • /
    • 2001
  • Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the step of manufacturing trial molds. High speed machining can be applied for this kind of purpose with a lot of practical advantages. In our research, several fundamental experiments are carried out to obtain machining parameters such as cutting force, machining time and surface characteristics for tool paths that are appropriate to high-speed machining. Moreover, a trial mold for an automatic transmission knob is fabricated with aluminum-7075 material. Using automatic set-up equipments, an ABS rapid prototype of a trial product of an AT knob is also manufactured with a filling process.

  • PDF

공기 정압 스핀들을 이용한 고속 볼엔드밀링 가공특성 평가 (A Characteristic of High Speed Ball End Milling Machining using The Air-Spindle)

  • 이종렬;안선일;안지훈;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.922-925
    • /
    • 2000
  • Generally, the machining accuracy in ball end milling directly depends on the rotational accuracy affected by the spindle speeds. The effects of spindle speeds for rotational accuracy in the high speed regions are more dominant than those in the low speed regions. This paper will investigate effects that the Increased speed affects on the rotational error according to the increase of a rotational speed and machining characteristics of the high speed ball-end milling in various rotational speeds and on various materials by using the high speed air-bearing spindle.

  • PDF

고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성 (The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed)

  • 구민수;김정석;강익수;박진효;이종환;김기태
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.