• Title/Summary/Keyword: High-speed Cutting

Search Result 626, Processing Time 0.032 seconds

Development of Free Machining Gray Cast Iron (쾌삭성 회주철의 개발)

  • Furuya, Satoshi;Ozoe, Nobuaki
    • Journal of Korea Foundry Society
    • /
    • v.42 no.3
    • /
    • pp.191-197
    • /
    • 2022
  • This study aims to improve the machinability of gray cast irons in high speed cutting by using nonmetallic inclusions. In this research, small quantities of AL and Mg were added to conventional gray cast irons without influencing their mechanical characteristics and castability to investigate the effects of these nonmetallic inclusions in the gray cast irons on tool wear in high speed cutting. During the high speed turning of gray cast iron containing Al and Mg using a cermet tool, protective layers consisting of Al, Mg, Si, Mn, S and O were detected on the flank face and rake face of the tool, and flank and crater wear were significantly reduced compared to the turning of conventional gray cast iron and gray cast iron added with Al. The effect of inclusions on tool wear increased with increasing cutting speed, and flank and crater wear was the smallest at the cutting speed of 700m/min. Moreover, in face milling, the addition of Al and Mg drastically decreased the wear rate, and wear hardly progressed even in prolonged cutting length after initial wear. The amount of adhesion on tool faces increased as the cutting speed increased. This increase in cutting speed resulted in the formation of a thick protective layer and the reduction of tool wear. Furthermore, the addition of small amounts of Al and Mg prevented thermal cracks in the face milling of gray cast irons.

Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material (금형강의 고속가공시 절삭력 및 표면조도의 특성)

  • 손창수;강명창;이용철;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

A study on the optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method

  • Lim Sang-Heon;Lee Choon-Man;Chung Won Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has presented the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by using Tacuchi method in the design of experiment. An L9(34) orthogonal array is adopted to study the effect of adjustment parameters. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. The surface roughness of sheet metal is regarded as a quality feature. Analysis of variance is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.

A Study on the Optimal Cutting Condition of High Speed Feeding Type Laser Cutting Machine by Taguchi Method (다구찌 방법을 이용한 고속 이송방식 레이저 절단기의 최적 절단 조건에 관한 연구)

  • 임상헌;박동근;이춘만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2004
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has studied to obtain the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by Tacuchi method in design of experiments. A Lf(34) orthogonal array is adopted to study the effect of adjustment parameter. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. And the quality feature is selected as surface roughness of sheet metal. Variance analysis is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.

A study on the slot cutting in granite by high speed water jet (초고압수에 의한 화강석절삭에 대한 연구)

  • ;;Ryu Chang-ha
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.92-101
    • /
    • 1994
  • Water jet has been employed in extraacton of minerals for many years but the applications of low pressure jent s ar emodfined to some fields. With increasing strength of equipment it is possible to consider the use of high speed water jets for cutting hard rock. The high speed water jet technology is applied to various engineering fiels such as precessing rocks, quarrying rocks, mechanical fracturing as wel as rock excavation under the sea. For slot cutting in rocks with high speed water jets it is necessary to establish the empirical formula for estiamation of the cutting depth. The cutting depth is influenced by cutting parameters such as driving pressure, traverse speed, standoff distance, and shape and diameter of nozzel. Tests were carried out with a variety of cutting parameters on three types of granite. Nozzle pressures ranged from 1,200 to 2,800 bar, traverse speeds from 0.45 to 10.38 cm/min, standoff distances from 4.5 to 13.5 mm, and three types of nozzle diameter were used.

  • PDF

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Study on the Design of End Mill Geometry for the High Speed Machining (고속 가공용 엔드밀의 형상설계에 관한 연구)

  • 이상규;배승민;고성림;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.67-70
    • /
    • 2001
  • The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter(rake angle, clearance angle, length of cutter) and cutting process(cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

Development of the program for Optimal Design of High Speed Endmill (최적형상의 고속용 엔드밀 설계를 위한 프로그램 개발)

  • 고성림;한창규;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.500-503
    • /
    • 2003
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

Evaluation of machining characteristics according to cutting condition of hardened steel in high speed machining (고경도 금형강(SKD61)의 고속가공에서 절삭조건 변화에 따른 가공성 평가)

  • 김득현;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.878-881
    • /
    • 2000
  • Recently high speed machining is being studied actively to reduce machining time and to improve machining precision. To perform efficient high speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force, tool wear and surface roughness. In this study. the cutting force and tool wear and surface roughness are investigated in case of various cutting conditions for hardened die steel.

  • PDF