• 제목/요약/키워드: High-rise complex

검색결과 300건 처리시간 0.028초

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

설계단계 시공엔지니어링 업무별 주요 시공성 정보 및 설계요인 분석 - 고층 건축 프로젝트의 가설공사를 중심으로 - (Analysis on Constructability Information and Design Elements by Construction Engineering Task at the Design Phase - Concentrated on Temporary Work in High-rise Building Projects -)

  • 이진웅;김태훈;조규만
    • 대한건축학회연합논문집
    • /
    • 제20권6호
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, as the shape and function of high-rise buildings have become more complex, engineering for reflecting the constructability in the design phase has the increasing importance. However, engineering tasks are not performed at the appropriate level and timing in most projects, which leads to inefficient work such as design changes and reworks. Hence, this study investigated the constructability knowledge, design elements, and supporting tools required to conduct engineering tasks related to temporary work at the design phase, and also analyzed the relationship between these factors using the correlation analysis. As a result, when the engineering tasks are applied in the design phase, constructability knowledge related to 'construction method and process' is the most important and the design factor related to 'layout/arrangement' should be considered as the most important factor. Based on the results of this study, the project participants can efficiently use necessary constructability knowledge during the design phase and facilitate effective decision-making and design alternatives for enhancing constructability.

Short term unsteady wind loading on a low-rise building

  • Sterling, M.;Baker, C.J.;Hoxey, R.P.
    • Wind and Structures
    • /
    • 제6권5호
    • /
    • pp.403-418
    • /
    • 2003
  • This paper presents an extensive analysis of the short term, unsteady wind loading on a low-rise building. The building is located in a rural environment and only the specific situation of wind flow orthogonal to the long face of the structure is considered. The data is analysed using conventional analysis and less traditional methods such as conditional sampling and wavelet analysis. The nature of the flow field over the building is found to be highly unsteady and complex. Fluctuating pressures on the windward wall are shown to a large extent to be caused by the fluctuations in the upstream flow, whereas extreme pressures on the roof are as a result of high intensity small scale flow structures. On the roof of the building a significant amount of energy is shown to exist at frequencies above 1 Hz.

유형별 슈퍼블록이 가로활력에 미치는 영향 분석 - 서울시 강남구 역삼2동을 사례로 - (A Study on Street Vitality of Two Different Types of Superblocks - With a case of Yeoksam 2-dong, Seoul -)

  • 주상민;김지엽
    • 대한건축학회논문집:계획계
    • /
    • 제35권10호
    • /
    • pp.71-82
    • /
    • 2019
  • This study tried to prove why a low-rise residential block is more vitalized than in a superblock consisted of an apartment housing complex. To do this, two adjacent superblocks in Yeoksam 2-dong were selected as a case study among superblocks of residential area in Gangnam, Seoul. It adopted the concept of 'complexity', 'Osmosis', 'Vitality' and 'Permeability' for evaluation indexes to measure street vitality. As a result, four indexes were clearly higher in low-density residential superblocks than apartment housing complex superblocks. First, the superblocks for apartment housing complexes showed a lower 'complexity' because large-scale parcels for an apartment housing complex reduces a possibility for various land uses. Second, smaller blocks improved "osmosis" compared to larger blocks, and the larger the block, the less likely it is that buildings and streets penetrate activity. Third, as the apartment complex block became larger, the number of accesses decreased. Thus, it did not provide vitality to the streets. Fourth, high permeability was shown in the low-density superblocks, while that of the superblock consisted of apartment housing complexes was very low because the entrance of the complexes entrance is closed to the public. The results of this study demonstrated that an apartment housing complex may hamper street vitality and deteriorate the quality of urban environments.

주상복합의 실외기 형태에 따른 냉방시스템 성능 평가 (The performance evaluation of outdoor unit cooling system in a residential apartment complex)

  • 경서경;김윤진;임정희;김병선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.263-268
    • /
    • 2008
  • In a residential complex case, the efficiency of land use are maximized, but a variation of external condition such as load in-equality, the increase in wind velocity and solar radiation by a height causes increasing energy in a building. Besides, because of increasing window size for a lighting and a view, it comes heating load in winter and cooling load in summer. A choice of cooling-system is important for this reason. Recently an internal high-rise residential complex installs an air-cooling system and operates individual heating. However, this study applies water-cooling used one public cooling-tower instead of an air-cooling system, also with an efficiency test of an air and a water-cooling system, consider an internal applicability.

  • PDF

Challenges in Structural Design of Bumeo W-project

  • Kim, Jong Soo;Jo, Duck Won;Choi, Eun Gyu
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.167-173
    • /
    • 2020
  • W-Project is 60-story mixed-use residential building complex project in Daegu, the third biggest city in South Korea. There are lots explorable items to be solved to secure structural safety and meet the serviceability requirements. This paper describes what kind of structural system is optimized based on the architectural requirements and structural components design and the grade of concrete strength altered on floors. The defining process of lateral resisting system of outrigger compared to the core ratio of typical plan is illustrated in detail.

가구형 집합주택의 거주후평가 연구 - 은평뉴타운을 중심으로 - (A Study on Post Occupancy Evaluation of Block Housing -Focused on The Block Housing in Eunpyeong New Town, in Korea -)

  • 박중현;추선경;강부성
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2009년 춘계학술발표대회 논문집
    • /
    • pp.73-77
    • /
    • 2009
  • The block housing type is coming to fore as a 'low-rise high-density housing type', which can resolve the all sorts of problem caused in Korea apartment housing complex and single-detached residental area in terms of livability, urbanity, and community. To analyze the characteristics of the block housing, the block housing in Eunpyeong New Town, in Korea was analyzed as a sample for post occupancy evaluation. The analysis show that the block housing is useful low-rise and high-density housing type, which ensures the livability as well as the urbanity and community. In details the analysis also shows the user satisfaction from the perspective of living and facility use within the block housing and individual unit.

  • PDF

Vertical Shortening Considerations in the 1 km Tall Jeddah Tower

  • Peronto, John;Sinn, Robert;Huizinga, Matthew
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.21-31
    • /
    • 2017
  • Jeddah Tower will be the first man-made structure to reach a kilometer in height upon its completion in 2019. From conception, it was clear that an all-concrete superstructure would present many advantages for a building of such unprecedented height and slenderness. An all-concrete structure, however, did present many challenges that needed to be addressed in the system arrangement and through comprehensive analysis and design, among them vertical shortening effects due to the time-dependent creep and shrinkage of concrete. This paper outlines and presents the engineering solutions developed by the authors regarding this complex concrete material phenomenon, while addressing the construction and regional challenges associated with realizing a concrete tower of this unprecedented scale.