• Title/Summary/Keyword: High-rise building fire

Search Result 268, Processing Time 0.021 seconds

Fireproofing Method for High Strength Concrete using Densified Spray Resistive Materials and Gypsum Board (고밀도 내화뿜칠재와 석고보드를 이용한 고강도 콘크리트 내화공법)

  • Song, Young-Chan;Kim, Yong-Ro;Oh, Jae-Keun;Kim, Ook-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.471-472
    • /
    • 2009
  • Recently, UH-PH SC (Ultra High PH Strength Concrete) used in High rise building is the material increases in tendency. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

A Study on Performance Improvement Measures of Pressurized Smoke Control Systems for Exit Passageways of High-Rise Buildings (고층건축물의 피난경로 가압제연시스템 성능개선대책에 관한 연구)

  • Son, Bong-Sae;Kim, Jin-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.703-714
    • /
    • 2009
  • One of the biggest problems in smoke control systems for high-rise buildings is stack effect, but there are no recognized methods or measures to solve the problem of stack effect as yet. The stack effect can be overcome by forming the uprising current inside the stair hall properly, but there is a limit to the height in supplying into the stair hall the smoke control air volume to be supplied to a floor in case of escape from fire. The limit to the height can be extended by over-coming the stack effect by pressurizing the stair hall and the ancillary room simultaneously. It can also be anticipated that the stack effect can be overcome by connecting the air supply shaft to the stair hall at the top. As a result of computer simulations using a network type of tool, it is found that adequate performance can be achieved by pressurizing the stair hall only for a building of 190m or less, and up to 360m when pressurizing the stair hall and the ancillary room simultaneously. In all those cases, however, an overpressure venting damper is required which operates within a suitable range for venting the overpressure outside.

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

Design and Implementation of Building Control System based 3D Modeling (3D 모델링 기반 빌딩관제시스템의 설계 및 구현)

  • Moon, Sang Ho;Kim, Byeong Mok;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.673-682
    • /
    • 2020
  • Buildings are becoming more and more high-rise and large-scale in recent years, so in the event of a disaster such as a fire, enormous human and economic damage is expected. Therefore, management, security, and fire control are essential for large buildings in the city. Because these large buildings are very complex outside and inside, they need a three-dimensional control based on 3D modeling rather than a simple flat-oriented control. To do this, this paper designed and implemented a building control system based on 3D modeling. Specifically, we designed a 3D building / facility editing module for 3D modeling of buildings, a 3D based control module for building control, and a linkage module that connects information such as firefighting equipment, electrical equipment and IoT equipment. Based on this design, a building control system based on 3D modeling was implemented.

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Performance requirement and Evaluation of Natural Smoke Exhaust Ventilator for High rise building (고층건물용 배연창의 성능기준 및 시험평가연구)

  • Kwark, Ji-Hyun;Choi, Jung-Min;An, Byung-Ho;Kim, Bum-Kyue;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.129-138
    • /
    • 2009
  • 화재발생시 가장 주요한 사망원인인 유독가스의 제어와, 소방관의 소화활동을 돕기 위한 제연설비는 각 구성품이 유기적으로 동작하는 시스템을 이루기 때문에 전체의 조화도 중요하지만, 기본적으로 각 설비요소가 제 기능을 발휘할 때 전체 시스템의 제연성능을 확보할 수 있게 된다. 그러나 현재 법으로 규정된 국내기준은 주요 구성품별 성능을 제대로 평가할 수 있는 방법 및 기준이 없어 본 연구를 통하여 배연창의 성능평가기술을 개발하고 항목별 성능시험을 실시하여 평가방법의 적합성을 검토하고 국가표준을 만들기 위한 기초 자료로 제공하고자 한다.

  • PDF

A Study on the Development of Evaluation Methods for Fire Risk Analysis of High-rise Building ((초)고층 건축물의 화재위험성 평가기법 위한 통계적 예측에 관한 연구)

  • Kwon, Young-Jin;Kim, Dong-Eun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.270-275
    • /
    • 2009
  • 최근 소방법의 경우 초고층구조물을 대상으로 한 성능설계 및 화재영향평가등을 실시할 예정으로 있으며 특히 화재위험성평가등에 대한 대책이 요구되고 있으나 이에 대한 데이터가 부족하며 그 방법론 또한 구축되어 있지못한 상황이다. 따라서 본보는 전보에 이어 화재 위험성평가를 위한 방법론에 대한 일환으로서 위험성예측에 사용하는 화재발생의 상위에 의한 화재규모와 rmm 발생율을 각용도별로 기존의 화재에이터 및 가연물조사결과등으로부터 통계적으로 추정하는 방법에 대하여 검토한 것이다.

  • PDF

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.

Pushing the Boundaries of Mass Timber Construction and Building Codes

  • Dubois, Jean-Marc;Frappier, Julie;Gallagher, Simon;Structures, Nordic
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.261-271
    • /
    • 2020
  • The 2020 National Building Code of Canada (NBC) and the 2021 International Building Code (IBC) both include Tall Wood Buildings (TWB) and are hailed as documents responsible for the proliferation of Mass Timber construction. Mass Timber construction is critical to reducing the carbon footprint of the construction industry; a sector acknowledged as being one of the greatest contributors of global annual CO2 emissions. Origine, a 13-storey multi-residential building erected in 2017 in a previously unsuitable site, is currently the tallest all-wood building in North America. This article describes the challenges overcome by the designers and client as they engaged with code officials, building authorities, and fire-service representatives to demonstrate the life-safety performance of this innovative building. It also traces the development of the "Guide for Mass Timber Buildings of up to 12 Storeys" published in Quebec and how it has enabled other significant Tall Wood projects across North America.

Study of Smoke Behavior and Differential Pressure in the Refuge Safety Area According to Damper Capacity of Smoke Control (제연댐퍼 송풍량에 따른 피난 안전 구역 차압 및 연기 거동 특성 연구)

  • Lee, Jae-Bin;Moon, Joo-Hyun;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2011
  • In this study, we calculated the smoke movement at the fire area of the refuge floor which has the refuge safety area in case of fire in the high rise building by using a computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). The buoyancy plume was applied using the temperature and flow velocity which represent 10 MW heat release rate in order to describe the fire, and the smoke movement was predicted using a species conservation equation. The pressurization system of smoke control was adopted with smoke control damper in refuge safety area, at the result, it is confirmed that the damper capacity was enough to smoke control in which the flow rate of supply was applied 25 $m^3/s$ in the case of the door at fire area opened only, and 50 $m^3/s$ in the doors at the fire area and lobby both opened case. They were satisfied in NFSC 501-A. Even though the door of fire area closed, there were smoke leakages at the gap between the door and wall. In addition, the refugee could be isolated in the fire area when the door of fire area closed during smoke control in the case of using the high damper flow rate of supply, 50 $m^3/s$. Therefore the proper damper flow rate of supply are needed in order to prevent the damage of refugee and this study proposes the suitable condition of damper capacity according to refuge scenario.