• Title/Summary/Keyword: High-resolution satellite image

Search Result 627, Processing Time 0.027 seconds

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

Development of Image Processing Software for Satellite Data

  • Chi, Kwang-Hoon;Suh, Jae-Young;Han, Jong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.361-369
    • /
    • 1998
  • Recently, the improvement of on-board satellite sensors covering hyperspectral image sensors, high spatial resolution sensors provide data on earth in diverse aspect. The application field relating remotely sensed data also varies depending on what type of job one wants. The various resolution of sensors from low to extremely high is also available on the market with a user defined specific location. The expense to purchase remote sensed data is going down compare to the cost it need past few years ago in terms of research or private use. Now, the satellite remote sensed data is used on the field of forecasting, forestry, agriculture, urban reconstruction, geology, or other research field in order to extract meaningful information by applying special techniques of image processing. There are many image processing packages available worldwide and one common aspect is that they are expensive. There need to be a advanced satellite data processing package for people who can not afford commercial packages to apply special remote sensing techniques on their data and produce valued-added product. The study was carried out with the purpose of developing a special satellite data processing package which covers almost every satellite produced data with normal image processing functions and also special functions needed on specific research field with friendly graphical user interface (GUI). And for the people with any background of remote sensing with windows platform.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Developing the 3D high-resolution forest mapping system using satellite images and GIS

  • Jo Myung-Hee;Jo Yun-Won;Kim Dong-Young;Kim Joon-Bum;Kim In-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.322-325
    • /
    • 2004
  • Recently the domestic technologies to manage forest and to control all related information were developed very rapidly by integrating FGIS (Forest Geographic Information System) and IT (Information technology). However, there still exists a mapping problem for example when overlaying a topography maps scaled in 1/5,000 to a forest type map scaled in 1/25.000. Moreover, there is a greater need to introduce the advanced spatial technologies such as high-resolution satellite image such as IKONOS and GIS to forest. In this study, 3D high-resolution forest mapping system was developed to possibly overlay with all kinds of scale maps and provide the all detailed information by using high-resolution satellite image and GIS. Through this system, all related forest officials could have and maintain the data consistency for their job and share the standard forest database with other post.

  • PDF

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Development of Ground Control Point Collection and Management System based on High resolution Satellite Images

  • Kim, Kwang-Yong;Yoon, Chang-Rak;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.343-345
    • /
    • 2003
  • This paper describes the system development for the Ground Control Point collection and management through the major coastline region in KOREA, which will collect and manage the ground control point based on high resolution satellite image database. The module of this system is following 1) GCP/Coarstline research plan module 2) GCP/Coarstline ground collection module 3) GCP/Coarstline post processing module Our team developed the core components of ‘High Resolution Satellite Image Processing Technique’ project, and this system, among applications of our project, is constructed to apply to practical use. In this application, you will also see how to apply core components of our project.

  • PDF

Comparison and Analysis of Features between Aerial Photo Image and Satellite Image (항공사진 영상과 위성 영상간의 지형지물 비교.분석)

  • 김감래;김재연
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Practical use is increasing on the aerial ortho image recently, and much researches for geographic information system build that use high resolution satellite image cause this are progressing. Also many researches that use KOMPSAT-1 satellite image of resolution 6.6m are performing in these days, estimation for between aerial photo and satellite image is needed. In this treatise scanned image of aerial photo, using aerial photo resampling image of resolution equal with KOMPSAT-1 image using aerial photo, and KOMPSAT-1 satellite image use for experimental image making each orthoimage, classified feature for estimate. We evaluated to what level that an separation item could be able to estimate in each orthoimage. As result of estimation analysis, In the classified feature in aerial photo orthoimage with aerial photo resampling image orthoimage is about 61%, KOMPSAT-1 satellite image orthoimage is almost 41% could estimated. Through this investigation estimate, KOMPSAT-1 satellite sue to map updating, geographic information og non-approach area and environment inspect.

RADIOMETRIC CHARACTERISTICS OF KOMPSAT-2 HIGH RESOLUTION IMAGES

  • Chi, Jun-Hwa;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.390-393
    • /
    • 2007
  • KOMPSAT-2, the first Korean high resolution earth observing satellite, continuously acquires high resolution images since July 2006. The quality of satellite images should be geometrically and radiometrically ensured before distribution to users. This study focused on absolute radiometric calibration which is a prerequisite procedure to ensure the radiometric quality of optical satellite images. In this study, we performed reflectance-based vicarious calibration methods on several uniform targets collected through several field campaigns in 2007. The radiative transfer model, MODTRAN, was used to estimate the amount of energy received at the sensor. The energy reached at the sensor are affected by several factors such as reflectance of targets, atmospheric condition, geometry condition between Sun and the sensor, etc. This study proposes the absolute radiometric calibration coefficients of KOMPSAT-2 MSC images combining several types of collected data through field works and tried to compare dynamic range of sensor-detected energy with other commercial high resolution sensors.

  • PDF

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF