• Title/Summary/Keyword: High-resolution hyper-spectral image

Search Result 7, Processing Time 0.022 seconds

Support Vector Machine and Spectral Angle Mapper Classifications of High Resolution Hyper Spectral Aerial Image

  • Enkhbaatar, Lkhagva;Jayakumar, S.;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.233-242
    • /
    • 2009
  • This paper presents two different types of supervised classifiers such as support vector machine (SVM) and spectral angle mapper (SAM). The Compact Airborne Spectrographic Imager (CASI) high resolution aerial image was classified with the above two classifier. The image was classified into eight land use /land cover classes. Accuracy assessment and Kappa statistics were estimated for SVM and SAM separately. The overall classification accuracy and Kappa statistics value of the SAM were 69.0% and 0.62 respectively, which were higher than those of SVM (62.5%, 0.54).

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Development of High Speed Satellite Data Acquisition System

  • Choi, Wook-Hyun;Park, Sang-Jin;Seo, In-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.280-282
    • /
    • 2003
  • The downlink data rates of the space-born payloads such as high-resolution optical cameras, synthetic aperture radars (SAR) and hyper-spectral sensors are being rapidly increased. For example, the image transmission rates of KOMPSAT-2 MSC(Multi-Spectral Camera) is 320Mbps even if on-board image compression scheme is used.[1] In the near future, the data rates are expected to be a level 500${\sim}$600Mbps because the required resolution will be higher and the swath width will be increased. This paper describes many techniques they enable 500Mbps data receiving and archiving system.

  • PDF

Band Selection Algorithm based on Expected Value for Pixel Classification (픽셀 분류를 위한 기댓값 기반 밴드 선택 알고리즘)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.107-112
    • /
    • 2022
  • In an embedded system such as a drone, it is difficult to store, transfer and analyze the entire hyper-spectral image to a server in real time because it takes a lot of power and time. Therefore, the hyper-spectral image data is transmitted to the server through dimension reduction or compression pre-processing. Feature selection method are used to send only the bands for analysis purpose, and these algorithms usually take a lot of processing time depending on the size of the image, even though the efficiency is high. In this paper, by improving the temporal disadvantage of the band selection algorithm, the time taken 24 hours was reduced to around 60-180 seconds based on the 40000*682 image resolution of 8GB data, and the use of 7.6GB RAM was significantly reduced to 2.3GB using 45 out of 150 bands. However, in terms of pixel classification performance, more than 98% of analysis results were derived similarly to the previous one.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

Classification of Hyperspectral Image Pixel using Optimal Band Selection based on Discrete Range (이산 범위 기반 최적 밴드 추출을 이용한 초분광 이미지 픽셀 분류)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.149-154
    • /
    • 2021
  • Unlike or common images, Hyperspectral images were taken by continuous electromagnetic spectral into numerous bands according to wavelengths and are high-capacity high-resolution images. It has more information than ordinary images, so it is used to explore objects and materials. To reduce the amount of information in hyper-spectral images to be processed, band selection is utilized. Existing band selection techniques are heuristic techniques based on statistics, which take a long time and often lack generality and universality. To compensate for this, this paper utilizes quantization concept to draw representative bands through Discrete Range, we use them for band selection algorithm. Experimental results showed that the proposed technique performed much faster than conventional band selection methods, and that the performance accuracy was similar to that of the original even though the number of bands was reduced by one-seventh to one-tenth.

Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification (하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.885-894
    • /
    • 2006
  • The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data.