• Title/Summary/Keyword: High-resolution computed tomography

Search Result 163, Processing Time 0.021 seconds

Experimental Study on the Dynamic Damage Mechanism of Rocks Under Different Impact Loadings (단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Ki, Seung-Kon;Park, Chan;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.545-557
    • /
    • 2009
  • In order to investigate dynamic damage mechanism of brittle materials, Split Hopkinson Pressure Bar (SHPB) have been adapted to apply different impact levels to rocks in South Korea. High resolution X-ray Computed Tomography (CT) was used to estimate the damage in tested rock samples nondestructively. The cracks which are parallel to the loading axis are visible on the contact surface with the incident bar under lower level of impact. The surface cracks disappeared with increment of impact level due to confined effect between the incident bar and sample, while axial splitting are happened near the outer surface.

Non-Infectious Granulomatous Lung Disease: Imaging Findings with Pathologic Correlation

  • Tomas Franquet;Teri J. Franks;Jeffrey R. Galvin;Edson Marchiori;Ana Gimenez;Sandra Mazzini;Takeshi Johkoh;Kyung Soo Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1416-1435
    • /
    • 2021
  • Non-infectious granulomatous lung disease represents a diverse group of disorders characterized by pulmonary opacities associated with granulomatous inflammation, a relatively nonspecific finding commonly encountered by pathologists. Some lesions may present a diagnostic challenge because of nonspecific imaging features; however, recognition of the various imaging manifestations of these disorders in conjunction with patients' clinical history, such as age, symptom onset and duration, immune status, and presence of asthma or cutaneous lesions, is imperative for narrowing the differential diagnosis and determining appropriate management of this rare group of disorders. In this pictorial review, we describe the pathologic findings of various non-infectious granulomatous lung diseases as well as the radiologic features and high-resolution computed tomography imaging features.

Comparison of high-resolution and standard zoom imaging modes in cone beam computed tomography for detection of longitudinal root fracture: An in vitro study

  • Taramsari, Mehran;Kajan, Zahra Dalili;Bashirzadeh, Parinaz;Salamat, Fatemeh
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the efficacy of two imaging modes in a cone beam computed tomography (CBCT) system in detecting root fracture in endodontically-treated teeth with fiber posts or screw posts by selecting two fields of view. Materials and Methods: In this study, 78 endodontically-treated single canal premolars were included. A post space was created in all of them. Then the teeth were randomly set in one of 6 artificial dental arches. In 39 of the 78 teeth set in the 6 dental arches, a root fracture was intentionally created. Next, a fiber post and a screw post were cemented into 26 teeth having equal the root fractures. High resolution (HiRes) and standard zoom images were provided by a CBCT device. Upon considering the reconstructed images, two observers in agreement with each other confirmed the presence or absence of root fracture. A McNemar test was used for comparing the results of the two modes. Results: The frequency of making a correct diagnosis using the HiRes zoom imaging mode was 71.8% and in standard zoom was 59%. The overall sensitivity and specificity in diagnosing root fracture in the HiRes mode were 71.79% and 46.15% and in the standard zoom modes were 58.97% and 33.33%, respectively. Conclusion: There were no significant differences between the diagnostic values of the two imaging modes used in the diagnosis of root fracture or in the presence of root canal restorations. In both modes, the most true-positive results were reported in the post space group.

Evaluation of Image Quality and Radiation Dose for Filtered Back-Projection and Iterative Reconstruction Algorithm in Abdominal Computed Tomography Protocol (복부 CT 프로토콜에서 필터 보정 역투영법과 반복적 재구성기법에 따른 화질 및 선량에 관한 연구)

  • Oh, Jeong-Min;Seo, Hyeon-Ji;Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1065-1072
    • /
    • 2021
  • In Computed Tomography, abdominal examination showed the highest proportion of use, and effort of reducing the radiation dose is required. Recently introduced Iterative Reconstruction(IR) is repetitive reconstruction technique of Computed Tomography. SIEMENS' IR, ADMIRE and GE's IR, ASIR-V, were used in this examination. Noise, % Contrast, and High contrast resolution were measured by using ACR phantom for image quality evaluation. In addition, CTDIvol and DLP displayed in the CT device were used for dose evaluation. When FBP and IR were compared, stage 2 to stage 5 of ADMIRE and 10, 30, 50, 70, and 90% of ASIR-V were applied, noise could be reduced from a minimum of 0.46 to a maximum of 2.38 in ADMIRE compared to FBP, and noise from a minimum of 0.51 to a maximum of 2.5 in ASIR-V compared to FBP. Also, % Contrast and High contrast resolution of FBP and IR were no statistical difference. When IR was used for abdominal CT examination, the radiation dose of ADMIRE is reduced by 25.39% compared to the radiation dose of FBP. Also, the radiation dose of ASIR-V is reduced by 16.61% compared to the radiation dose of FBP. In conclusion, it is believed that if IR is applied during abdominal CT examination, the radiation dose can be reduced without deteriorating the image quality.

Characteristics of a new cone beam computed tomography

  • Park, Chang-Seo;Kim, Kee-Deog;Park, Hyok;Jeong, Ho-Gul;Lee, Sang-Chul
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.205-209
    • /
    • 2007
  • Purpose: To determine the physical properties of a newly developed cone beam computed tomography (CBCT). Materials and Methods: We measured and compared the imaging properties for the indirect-type flat panel detector (FPD) of a new CBCT and the single detector array (SDA) of conventional helical CT (CHCT). Results: First, the modulation transfer function (MTF) of the CBCT were superior to those of the CHCT. Second, the noise power spectrum (NPS) of the CBCT were worse than those of the CHCT. Third, detective quantum efficiency (DQE) of the indirect-type CBCT were worse than those of the CHCT at lower spatial frequencies, but were better at higher spatial frequencies. Although the comparison of contrast-to-noise ratio (CNR) was estimated in the limited range of tube current, CNR of CBCT were worse than those of CHCT. Conclusion: This study shows that the indirect-type FPD system may be useful as a CBCT detector because of high resolution.

  • PDF

A DIAGNOSIS OF SUBMANDIBULAR SIALOLITHIASIS WITH COMPUTED TOMOGRAPHY (전산화 단층촬영술을 이용한 악하선 타석증의 진단)

  • Koo, Chi-Kyun;Choi, Hyung-Jun;Lee, Jong-Gap;Lee, Jae-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.3
    • /
    • pp.545-548
    • /
    • 1998
  • Sialolithiasis is the formation of calcareous concretions within ductal system of a major or minor salivary gland. They are formed by deposition of calcium salts around a central nidus which may consist of desquamated epithelial cells, bacteria, foreign bodies, or products of bacterial decomposition. An 11-year-old boy complained of pain during meals and intermittent mild swelling in the right submandibular region. Although it was not detected in true occlusal radiograph, panoramic radiograph showed a round radiopaque mass 3mm in diameter. Computed tomography(CT) was taken for locating the stone and 3-dimensional reconstruction was performed. Under general anesthesia, sialoadenectomy was done through extraoral approach. Diagnosis of submandibular sialolithiasis using high-resolution CT with reconstructions was helpful for surgical decisions, namely radical removal of the submandibular gland and its duct.

  • PDF

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

DILD (diffuse infiltrative lung disease); Radiologic Diagnostic Approach According to High-Resolution CT Pattern (미만성 침윤성 폐질환; 고해상 전산화 단층촬영상 병변의 유형에 따른 방사선학적 진단접근)

  • Lee, Ki-Nam
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.111-119
    • /
    • 2005
  • The introduction of high-resolution CT (HRCT) in recent years has improved the ability of radiologists to detect and characterize the diffuse infiltrative lung disease (DILD). The detection and diagnosis of diffuse lung disease using HRCT are based on the recognition of specific abnormal findings. In this article, pattern recognition of HRCT findings is reviewed in the differential diagnosis of diffuse infiltrative lung disease. In general, HRCT findings of lung disease can be classified into four categories based on their appearances. These categories consist of (1) nodules and nodular opacities, (2) linear and reticular opacities, (3) increased lung opacity, and (4) decreased lung opacity, including cystic lesions.

Development of a Micro-CT System for Small Animal Imaging (소 동물 촬영을 위한 Micro-CT의 개발)

  • Sang Chul Lee;Ho Kyung Kim;In Kon Chun;Myung Hye Cho;Min Hyoung Cho;Soo Yeol Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 2004
  • We developed an x-ray cone-beam micro computed tomography (micro-CT) system for small-animal imaging. The micro-CT system consists of a 2-D flat-panel x-ray detector with a field-of-view (FOV) of 120${\times}$120 mm2, a micro-focus x-ray source, a scan controller and a parallel image reconstruction system. Imaging performances of the micro-CT system have been evaluated in terms of contrast and spatial resolution. The minimum resolvable contrast has been found to be less than 36 CT numbers at the dose of 95 mGy and the spatial resolution about 14 lp/mm. As small animal imaging results, we present high resolution 3-D images of rat organs including a femur, a heart and vessels. We expected that the developed micro-CT system can be greatly used in biomedical studies using small animals.

Photon-Counting Detector CT: Key Points Radiologists Should Know

  • Andrea Esquivel;Andrea Ferrero;Achille Mileto;Francis Baffour;Kelly Horst;Prabhakar Shantha Rajiah;Akitoshi Inoue;Shuai Leng;Cynthia McCollough;Joel G. Fletcher
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.854-865
    • /
    • 2022
  • Photon-counting detector (PCD) CT is a new CT technology utilizing a direct conversion X-ray detector, where incident X-ray photon energies are directly recorded as electronical signals. The design of the photon-counting detector itself facilitates improvements in spatial resolution (via smaller detector pixel design) and iodine signal (via count weighting) while still permitting multi-energy imaging. PCD-CT can eliminate electronic noise and reduce artifacts due to the use of energy thresholds. Improved dose efficiency is important for low dose CT and pediatric imaging. The ultra-high spatial resolution of PCD-CT design permits lower dose scanning for all body regions and is particularly helpful in identifying important imaging findings in thoracic and musculoskeletal CT. Improved iodine signal may be helpful for low contrast tasks in abdominal imaging. Virtual monoenergetic images and material classification will assist with numerous diagnostic tasks in abdominal, musculoskeletal, and cardiovascular imaging. Dual-source PCD-CT permits multi-energy CT images of the heart and coronary arteries at high temporal resolution. In this special review article, we review the clinical benefits of this technology across a wide variety of radiological subspecialties.