• Title/Summary/Keyword: High-resolution climate data

Search Result 213, Processing Time 0.026 seconds

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (II) : NUMERICAL EXPERIMENTS

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.73-89
    • /
    • 2005
  • Two kinds of high resolution GCMs with the same spatial resolutions but with different schemes run by domestic and foreign agencies are used to clarify the usefulness and sensitivity of GCM for water resources applications for Korea. One is AMIP-II (Atmospheric Model Intercomparison Project-II) type GCM simulation results done by ECMWF (European Centre for Medium-Range Weather Forecasts) and the other one is AMIP-I type GCM simulation results done by METRI (Korean Meteorological Research Institute). Observed mean areal precipitation, temperature, and discharge values on 7 major river basins were used for target variables. Monte Carlo simulation was used to establish the significance of the estimator values. Sensitivity analyses were done in accordance with the proposed ways. Through the various tests, discrimination condition is sensitive for the distribution of the data. Window size is sensitive for the data variation and the area of the basins. Discrimination abilities of each nodal value affects on the correct association. In addition to theses sensitivity analyses results, we also noticed some characteristics of each GCM. For Korean water resources, monthly and small window setting analyses are recommended using GCMs.

  • PDF

Computation of Super High-Resolution Global Ocean Model using Earth Simulator

  • Kim, Dong-Hoon;Norikazu Nakashiki;Yoshikatsu Yoshida;Takaki Tsubono;Frank O. Bryan;Richard D.Smith;Mathew E. Maltrud;Matthew W. Hecht;Julie L. McClean
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.164-169
    • /
    • 2003
  • The need fur higher grid resolution in climate models is often discussed (e.g. McAvaney et al.,2001) because a number of important oceanic processes are not resolved by the current generation of coupled models, e.g., boundary currents, mesoscale eddy fluxes, sill through flows. McClean et al., (1997) and Bryan and Smith (1998) have compared simulated mesoscale variability in simulations at several eddy-resolving resolutions to TOPEX/Poseidon and similar data. (omitted)

  • PDF

Moderate fraction snow mapping in Tibetan Plateau

  • Hongen, Zhang;Suhong, Liu;Jiancheng, Shi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.75-77
    • /
    • 2003
  • The spatial distribution of snow cover area is a crucial input to models of hydrology and climate in alpine and other seasonally snow covered areas.The objective in our study is to develop a rapidly automatic and high accuracy snow cover mapping algorithm applicable for the Tibetan Plateau which is the most sensitive about climatic change. Monitoring regional snow extent reqires higher temoral frequency-moderate spatial resolution imagery.Our algorithm is based AVHRR and MODIS data and will provide long-term fraction snow cover area map.We present here a technique is based on the multiple endmembers approach and by taking advantages of current approaches, we developed a technique for automatic selection of local reference spectral endmembers.

  • PDF

Utility of Climate Model Information For Water Resources Management in Korea

  • Jeong, Chang-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.37-45
    • /
    • 2008
  • It is expected that conditions of water resources will be changed in Korea in accordance with world wide climate change. In order to deal with this problem and find a way of minimizing the effect of future climate change, the usefulness of climate model simulation information is examined in this study. The objective of this study is to assess the applicability of GCM (General Circulation Model) information for Korean water resources management through uncertainty analysis. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. An estimator that accounts for climate model simulation and spatial association between the GCM data and observed data is used. Atmospheric general circulation model (AGCM) simulations done by ECMWF (European Centre for Medium-Range Weather Forecasts) with a resolution of $2^{\circ}{\times}2^{\circ}$, and METRI (Meteorological Research Institute, Korea) with resolutions of $2^{\circ}{\times}2^{\circ}$ and $4^{\circ}{\times}5^{\circ}$, were used for indicator variables, while observed mean areal precipitation (MAP) data, discharge data and mean areal temperature data on the seven major river basins in Korea were used for target variables. The results show that GCM simulations are useful in discriminating the high from the low of the observed precipitation, discharge, and temperature values. Temperature especially can be useful regardless of model and season.

A study on possibility of land vegetation observation with Mid-resolution sensor

  • Honda, Y.;Moriyama, M.;Ono, A.;Kajiwara, K.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.349-352
    • /
    • 2007
  • The Fourth Assessment Report of IPCC predicted that global warming is already happening and it should be caused from the increase of greenhouse gases by the extension of human activities. These global changes will give a serious influence for human society. Global environment can be monitored by the earth observation using satellite. For the observation of global climate change and resolving the global warming process, satellite should be useful equipment and its detecting data contribute to social benefits effectively. JAXA (former NASDA) has made a new plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, provides an optical sensor from Near-DV to TIR. Characteristic specifications of SGLI are as follows; 1) 250 m resolutions over land and area along the shore, 2) Three directional polarization observation (red and NIR), and 3) 500 m resolutions temperature over land and area along shore. These characteristics are useful in many fields of social benefits. For example, multi-angular observation and 250 m high frequency observation give new knowledge in monitoring of land vegetation. It is expected that land products with land aerosol information by polarization observation are improved remarkably. We are studying these possibilities by ground data and satellite data.

  • PDF

Design and Implementation of Reference Evapotranspiration Database for Future Climate Scenarios (기후변화 시나리오를 이용한 미래 읍면동단위 기준증발산량 데이터베이스 설계 및 구축)

  • Kim, Taegon;Suh, Kyo;Nam, Won-Ho;Lee, Jemyung;Hwang, Syewoon;Yoo, Seung-Hwan;Hong, Soun-Ouk
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.71-80
    • /
    • 2016
  • Meanwhile, reference evapotranspiration(ET0) is important information for agricultural management including irrigation planning and drought assessment, the database of reference evapotranspiration for future periods was rarely constructed especially at districts unit over the country. The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides several meteorological data such as precipitation, average temperature, humidity, wind speed, and radiation for long-term future period at daily time-scale. This study aimed to build a database for reference evapotranspiration using the climate forecasts at high resolution (the outputs of HadGEM3-RA provided by Korea Meteorological Administration (KMA)). To estimate reference evapotranspiration, we implemented four different models such as FAO Modified Penman, FAO Penman-Monteith, FAO Blaney-Criddle, and Thornthwaite. The suggested database system has an open architecture so that user could add other models into the database. The database contains 5,050 regions' data for each four models and four Representative Concentration Pathways (RCP) climate change scenarios. The developed database system provides selecting features by which the database users could extract specific region and period data.

High Resolution Ocean Color Products Estimation in Fjord of Svalbard, Arctic Sea using Landsat-8 OLI (Landsat-8 OLI를 이용한 북극해 스발바드 피요르드의 고해상도 Ocean Color Product 산출)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Hyun, Chang-Uk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.809-816
    • /
    • 2014
  • Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.

Prediction of Paddy Irrigation Demand in Nakdong River Basin Using Regional Climate Model Outputs (지역기후모형 자료를 이용한 낙동강 권역의 논 관개용수 수요량 예측)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The paddy irrigation demand for Nakdong river basin in Korea due to the climate change have been analyzed using regional climate model outputs. High-resolution (27 ${\times}$ 27 km) climate data for SRES A2 scenario produced by the Meteorological Research Institute (METRI), South Korea, and the observed baseline climatology dataset (1971-2000) were used. The outputs from the ECHO-G GCM model were dynamically downscaled using the MM5 regional model by METRI. Maps showing the predicted spatial variations of changes in climate parameters and paddy irrigation requirements have been produced using the geographic information system. The results of this study showed that the average growing season temperature will increase steadily by 1.5 $^{\circ}C$ (2020s A2), 3.2 $^{\circ}C$ (2050s A2) and 5.2 $^{\circ}C$ (2080s A2) from the baseline (1971-2000) 19.8 $^{\circ}C$. The average growing season rainfall will change by -3.4 % (2020s A2), 0.0 % (2050s A2) and +16.5 % (2080s A2) from the baseline value 886 mm. Assuming paddy area and cropping pattern remain unchanged the average volumetric irrigation demands were predicted to increase by 5.3 % (2020s A2), 8.1 % (2050s A2) and 2.2 % (2080s A2) from the baseline value 1.159 ${\times}$ $10^6\; m^3$. These projections are different from the previous study by Chung (2009) which used a different GCM and downscaling method and projected decreasing irrigation demands. This indicates that one should be careful in interpreting the results of similar studies.

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.