• Title/Summary/Keyword: High-resolution climate data

Search Result 213, Processing Time 0.02 seconds

Remote Sensing Applications for Malaria Research : Emerging Agenda of Medical Geography (원격탐사 자료를 이용한 말라리아 연구 : 보건지리학적 과제와 전망)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.473-493
    • /
    • 2012
  • Malaria infection is sensitively influenced by regional meteorological conditions along with global climate change. Remote sensing techniques have become an important tool for extraction of climatic and environmental factors, including rainfall, temperature, surface water, soil moisture, and land use, which are directly linked to the habitat qualities of malaria mosquitoes. Improvement of sensor fidelity with higher spatial and spectral resolution, new multinational sensor development, and decreased data cost have nurtured diverse remote sensing applications in malaria research. In 1984, eradication of endemic malaria was declared in Korea, but reemergence of malaria was reported in mid-1990s. Considering constant changes in malaria cases since 2000, the epidemiological management of the disease needs careful monitoring. Geographically, northmost counties neighboring North Korea have been ranked high in the number of malaria cases. High infection rates in these areas drew special attention and led to a hypothesis that malaria dispersion in these border counties might be caused by north-origin, malaria-bearing adult mosquitoes. Habitat conditions of malaria mosquitoes are important parameters for prediction of the vector abundance. However, it should be realized that malaria infection and transmission is a complex mechanism, where non-environmental factors, including human behavior, demographic structure, landscape structure, and spatial relationships between human residence and the vector habitats, are also significant considerations in the framework of medical geography.

  • PDF

Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation (시계열 강수량 공간화를 위한 SCEM-UA 기반의 PRISM 매개변수 최적화)

  • Kim, Yong-Tak;Park, Moonhyung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.903-915
    • /
    • 2020
  • Long-term high-resolution hydro-meteorological data has been recognized as an essential element in establishing the water resources plan. The increasing demand for spatial precipitation in various areas such as climate, hydrology, geography, ecology, and environment is apparent. However, potential limitations of the existing area-weighted and numerical interpolation methods for interpolating precipitation in high altitude areas remains less explored. The proposed PRISM (Precipitation-Elevation Regressions on Independent Slopes Model) model can produce gridded precipitation that can adequately consider topographic characteristics (e.g., slope and altitude), which are not substantially included in the existing interpolation techniques. In this study, the PRISM model was optimized with SCEM-UA (Shuffled Complex Evolution Metropolis-University of Arizona) to produce daily gridded precipitation. As a result, the minimum impact radius was calculated 9.10 km and the maximum 34.99 km. The altitude of coastal weighted was 681.03 m, the minimum and maximum distances from coastal were 9.85 km and 38.05 km. The distance weighting factor was calculated to be about 0.87, confirming that the PRISM result was very sensitive to distance. The results showed that the proposed PRISM model could reproduce the observed statistical properties reasonably well.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

Determination of dynamic threshold for sea-ice detection through relationship between 11 µm brightness temperature and 11-12 µm brightness temperature difference (11 µm 휘도온도와 11-12 µm 휘도온도차의 상관성 분석을 활용한 해빙탐지 동적임계치 결정)

  • Jin, Donghyun;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Lee, Darae;Kwon, Chaeyoung;Kim, Honghee;Lee, Eunkyung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.243-248
    • /
    • 2017
  • Sea ice which is an important component of the global climate system is being actively detected by satellite because it have been distributed to polar and high-latitude region. and the sea ice detection method using satellite uses reflectance and temperature data. the sea ice detection method of Moderate-Resolution Imaging Spectroradiometer (MODIS), which is a technique utilizing Ice Surface Temperature (IST) have been utilized by many studies. In this study, we propose a simple and effective method of sea ice detection using the dynamic threshold technique with no IST calculation process. In order to specify the dynamic threshold, pixels with freezing point of MODIS IST of 273.0 K or less were extracted. For the extracted pixels, we analyzed the relationship between MODIS IST, MODIS $11{\mu}m$ channel brightness temperature($T_{11{\mu}m}$) and Brightness Temperature Difference ($BTD:T_{11{\mu}m}-T_{12{\mu}m}$). As a result of the analysis, the relationship between the three values showed a linear characteristic and the threshold value was designated by using this. In the case ofsea ice detection, if $T_{11{\mu}m}$ is below the specified threshold value, it is detected as sea ice on clear sky. And in order to estimate the performance of the proposed sea ice detection method, the accuracy was analyzed using MODIS Sea ice extent and then validation accuracy was higher than 99% in Producer Accuracy (PA).