• 제목/요약/키워드: High-resolution climate data

검색결과 213건 처리시간 0.023초

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • 제39권5_2호
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies (인공위성 원격탐사 기반 메탄 배출 모니터링 기술 현황)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Economic and Environmental Geology
    • /
    • 제57권5호
    • /
    • pp.513-527
    • /
    • 2024
  • Methane is the second most significant greenhouse gas contributing to global warming after carbon dioxide, exerting a substantial impact on climate change. This paper provides a comprehensive review of satellite remote sensing-based methane detection technologies used to efficiently detect and quantify methane emissions. Methane emission sources are broadly categorized into natural sources (such as permafrost and wetlands) and anthropogenic sources (such as agriculture, coal mines, oil and gas fields, and landfills). This study focuses on anthropogenic sources and examines the principles of methane detection using information from various spectral bands, including the shortwave infrared (SWIR) band, and the utilization of key satellite data supporting these technologies. Recently, deep learning techniques have been applied in methane detection research using satellite data, contributing to more accurate analyses of methane emissions. Furthermore, this paper assesses the practicality of satellite-based methane monitoring by synthesizing case studies of methane emission detection at global, regional, and major incident scales, including examples of applying deep learning techniques. At the global scale, research utilizing satellite sensors like the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) was reviewed. At the regional scale, studies were highlighted where TROPOMI data was combined with relatively high-resolution satellite data, such as the Sentinel-2 MultiSpectral Instrument (MSI) and GHGSat Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer, to detect methane emissions and sources. Through this comprehensive review, the current state and applicability of satellite-based methane detection technologies are evaluated.

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • 제35권5_2호
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • 제39권6_1호
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Impact of the Local Surface Characteristics and the Distance from the Center of Heat Island to Suburban Areas on the Night Temperature Distribution over the Seoul Metropolitan Area (수도권 열섬 중심으로부터 교외까지의 거리 및 국지적 지표특성이 야간 기온분포에 미치는 영향)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;An, Seung-Man;Choi, Young-Jean
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제17권1호
    • /
    • pp.35-49
    • /
    • 2014
  • In order to understand the impacts of surface characteristics and the distance from the urban heat island center to suburban areas on the mean night time air temperature, we analyzed GIS and AWS observational data. Spatial distributions of mean night time air temperature during the summer and winter periods of 2004-2011(six years) were utilized. Results show that the temperature gradients were different by distance and direction. We found high correlation between mean night-time air temperature and artificial land cover area within 1km and 200m radii during both summer(R=0.84) and winter(R=0.78) seasons. Regression models either from 1km and 200m land surface data explained the distribution of night-time temperature equally well if the input data had sufficient resolution with detailed attribute including building area and height.

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • 제40권2호
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • 제39권5_3호
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • 제34권2_1호
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.

Analysis of Urban Thermal Environment for Environment-Friendly Spatial Plan (친환경적 공간계획을 위한 도시의 열환경 분석)

  • Lee, Woo-Sung;Jung, Sung-Gwan;Park, Kyung-Hun;Kim, Kyung-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제13권1호
    • /
    • pp.142-154
    • /
    • 2010
  • The purpose of this study is to analyze the effects of various spatial characteristics on the land surface temperature and to grasp the characteristics of thermal environment by types of urban area in Changwon, Gyeongsangnam-do. The spatial data were consisted LST, normalized difference built-up index(NDBI) and normalized difference vegetation index(NDVI) obtained from Landsat 5 TM and land use and land cover map classified from high resolution digital aerial photograph($10cm{\times}10cm$). The unit space for spatial analysis was built by $500m{\times}500m$ Vector GRID. According to the results of estimation of relationship between thermal environment and spatial characteristics, LST had the highest positive correlation with NDBI by 0.929 and had high positive correlation with impervious area ratio by 0.857. In order to analysis of thermal environment on land use, types of urban area were classified by 4 of residential focus area, industrial focus area, green focus area and mixed area. According to the results of analysis, mean LST of industrial focus area was showed the highest by $21.10^{\circ}C$. But mean LST of green focus area was analyzed the lowest by $18.85^{\circ}C$. In conclusion, the results of this study investigated the effects of spatial characteristics on urban thermal environment and can provide methods and basic informations about land use planning and development density restriction for reduction of urban heat.

Detection of Decay Leaf Using High-Resolution Satellite Data (고해상도 위성자료를 활용한 마른 잎 탐지)

  • Sim, Suyoung;Jin, Donghyun;Seong, Noh-hun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Jung, Daeseong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • 제36권3호
    • /
    • pp.401-410
    • /
    • 2020
  • Recently, many studies have been conducted on the changing phenology on the Korean Peninsula due to global warming. However, because of the geographical characteristics, research on plant season in autumn, which is difficult to measure compared to spring season, is insufficient. In this study, all leaves that maple and fallen leaves were defined as 'Decay leaves' and decay leaf detection was performed based on the Landsat-8 satellite image. The first threshold value of decay leaves was calculated by using NDVI and the secondary threshold value of decay leaves was calculated using by NDWI and the difference of spectral characteristics with green leaves. POD, FAR values were used to verify accuracy of the dry leaf detection algorithm in this study, and the results showed high accuracy with POD of 98.619 and FAR of 1.203.