• Title/Summary/Keyword: High-quality weather information

Search Result 64, Processing Time 0.023 seconds

Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images (RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Lee, Hee Kyung;Choo, Hyon-Gon;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • Most object detection algorithms are studied based on RGB images. Because the RGB cameras are capturing images based on light, however, the object detection performance is poor when the light condition is not good, e.g., at night or foggy days. On the other hand, high-quality infrared(IR) images regardless of weather condition and light can be acquired because IR images are captured by an IR sensor that makes images with heat information. In this paper, we performed the object detection algorithm based on the compression ratio in RGB and IR images to show the detection capabilities. We selected RGB and IR images that were taken at night from the Free FLIR Thermal dataset for the ADAS(Advanced Driver Assistance Systems) research. We used the pre-trained object detection network for RGB images and a fine-tuned network that is tuned based on night RGB and IR images. Experimental results show that higher object detection performance can be acquired using IR images than using RGB images in both networks.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Characteristics of Aquatic Environment and Algal Bloom in a Small-scaled Agricultural Reservoir (Jundae Reservoir) (소규모 농업용 전대저수지의 수환경 변화와 조류발생 특성)

  • Nam, Gui-Sook;Lee, Eui-Haeng;Kim, Mirinae;Pae, Yo-Sup;Eum, Han-Young
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to identify the relationship between environmental factors and algal bloom, and provide information for efficient management based on the results of monitoring the environmental parameters and algal diversity in the Jundai reservoir from March 2011 to October 2013. Little change in the weather conditions was observed during the study period except for a slight decrease in rainfall. Concentration of TN and TP in the reservoir exceeded water quality standards for agriculture and significant correlation between algal growth and environmental factors was observed. Phytoplankton in Jundai reservoir included 6 classes, 40 genus, 62 species, and the phytoplankton abundance was in the range of $1.3{\times}10^4{\sim}2.8{\times}10^6$ cells $mL^{-1}$. The annual average of phytoplankton abundance and Chl-a gradually decreased as TN and TP concentrations decreased. Overall Anabaena sp., Oscillatoria sp., and Microcystis sp. were the dominant species in Jundai reservoir. As the water temperature increased, the dominant species were Anabaena sp., Microcystis sp. and Oscillatoria sp., in that order. Anabaena sp. was dominant from spring to early summer with increase in water temperature and pollutant concentrations, and high correlation with environmental factors was observed. Microcystis sp. was dominant depending on changes in the nutrient levels. In the case of Oscillatoria sp., there was no significant correlation between phytoplankton biomess and Chl-a. However, efficient management of water environment and practical control of algal bloom in small scale reservoir polluted by livestock and farm irrigation should be achieved by identification of the relationship between algal growth and environmental factors.