• Title/Summary/Keyword: High-quality weather information

Search Result 64, Processing Time 0.025 seconds

A Study on Concrete Curing Quality Management Based on Various Test of Construction Condition under Hot Weather Circumstance (서중(暑中) 환경에서 현장 콘크리트 시험을 통한 양생 품질관리 방안)

  • Park, Shin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.71-80
    • /
    • 2006
  • It is required to study systematical on the concrete quality management to extend structure life because rebuilding effect is reducing under present condition of large sized and high stories structure. Concrete, which shows its intensity by hydrating action and a big change in quality according to hot weather and temperature, produces a lot of quality problem under hot and cold weather. Because of each specification and construction plan which does not have basic standard on site, concrete's quality is irregular and makes some defect. As a result, Dae-gu is fumed out to be the longest area after investigating application period and days focused on 8 cities weather information about t relationship between hot weather circumstance and construction environment. Therefore, we first surveyed the curing construction processing in the region and found out the problem of quality management. Then figure out the way of solution. Moreover, we integrated curing quality management, which is applied differently to each site, to have equal quality and to reduce defect from construction site. And then, based on various test of construction condition and analysis of quality management item, we suggest effective concrete quality management to make curing construction standard guide and plan under hot weather.

Development of Ubiquitous Sensor Network Quality Control Algorithm for Highland Cabbage (고랭지배추 생육을 위한 유비쿼터스 센서 네트워크 품질관리 알고리즘 개발)

  • Cho, Changje;Hwang, Guenbo;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • Weather causes much of the risk of agricultural activity. For efficient farming, we need to use weather information. Modern agriculture has been developed to create high added value through convergence with state-of-the-art Information and Communication Technology (ICT). This study deals with the quality control algorithms of weather monitoring equipment through Ubiquitous Sensor Network (USN) observational equipment for efficient cultivation of cabbage. Accurate weather observations are important. To achieve this goal, the Korea Meteorological Administration, for example, developed various quality control algorithms to determine regularity of the observation. The research data of this study were obtained from five USN stations, which were installed in Anbandegi and Gwinemi from 2015 to 2017. Quality control algorithms were developed for flat line check, temporal outliers check, time series consistency check and spatial outliers check. Finally, the quality control algorithms proposed in this study can also identify potential abnormal observations taking into account the temporal and spatial characteristics of weather data. It is expected to be useful for efficient management of highland cabbage production by providing quality-controlled weather data.

The Role of Weather and Climate Information as a Growth Engine for Passing the Gross Domestic Product per Head of $20,000 (국민소득 2만달러 달성의 성장엔진으로서 기상정보의 역할)

  • Kim, Yeong-Sin;Lee, Ki-Bong;Kim, Hoe-Cheol
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • High quality meteorological information is the typical product of service business industry which can offer the investment initiative by reducing the uncertainty and by activating other related industries. It requires a high level of meteorological technology and of ability to transform such technology as merchandising products. According to the analysis of the WMO data, the level of Korean meteorological technology is comparable to that of the nation with $17,500, GDP per head. However, the income of the meteorological business agent earns in Korea is 8 billion 4 hundred million won which is less than a tenth of that made by the US or Japan. The potential for such business field in Korea will be strong enough, if one can overcome such weak points. In addition, the efforts made by the government to advance the meteorological technology have been actualized gradually. Korean government will have a chance that is comparable to offering jobs for 20,000 unemployed by creating incomes of 40 billion won by meteorological technology as a sustained economic growth engine. It is proposed that government stimulate demand and supply by focusing on sales quantity than the price. The key points for creating the new demand are marketing and outsourcing of weather and climate information by maintaining the cooperative relationship between private and public sector.

Construction and Case Analysis of Detailed Urban Characteristic Information on Seoul Metropolitan Area for High-Resolution Numerical Weather Prediction Model (고해상도 수치예보모델을 위한 수도권지역의 상세한 도시특성정보 구축 및 사례 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Yi, Chaeyeon;Min, Jae-Sik
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.567-583
    • /
    • 2019
  • In this study, the high-resolution numerical simulations considering detailed anthropogenic heat, albedo, emission and roughness length are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, improved urban parameter data for Seoul Metropolitan Area (SMA) was collected from global data. And then the parameters were applied to WRF-UCM model after it was processed into 2-dimensional topographical data. The 6 experiments were simulated by using the model with each parameter and verified against observation from Automated Weather Station (AWS) and flux tower for the temperature and sensible heat flux. The data for sensible heat flux of flux towers on Jungnang and Bucheon, the temperature of AWS on Jungnang, Gangnam, Bucheon and Neonggok were used as verification data. In the case of summer, the improvement of simulation by using detailed anthropogenic heat was higher than the other experiments in sensible flux simulation. The results of winter case show improved in all simulations using each advanced parameters in temperature and sensible heat flux simulation. Improvement of urban parameters in this study are possible to reflect the heat characteristics of urban area. Especially, detailed application of anthropogenic heat contributed to the enhancement of predicted value for sensible heat flux and temperature.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

Improvement of PM10 Forecasting Performance using Membership Function and DNN (멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상)

  • Yu, Suk Hyun;Jeon, Young Tae;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data (동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

Improvement of PM10 Forecasting Performance using DNN and Secondary Data (DNN과 2차 데이터를 이용한 PM10 예보 성능 개선)

  • Yu, SukHyun;Jeon, YoungTae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.