• 제목/요약/키워드: High-power Fuel Cell System

검색결과 265건 처리시간 0.03초

배열이용 공기증폭기를 활용한 고효율 연료전지 시스템 (High Efficiency Fuel Cell System with Air Amplifier using Waste Heat)

  • 전재호;최영재;전중환;김선태;김성완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • 지금까지 연료전지 시스템의 효율을 극대화시키기 위한 기술들이 개발되어 왔는데, 대표적인 방법은 CHP(Combined Heat & power)와 FCT(Fuel cell & Turbine) Hybrid 시스템이다. 그러나 본 연구의 기술은 연료전지 배열을 이용한 Coanda 공기증폭기를 장착한 새로운 개념의 고효율 연료전지 시스템이다. 원래 공기 증폭기는 완만한 곡면 주위를 흐르는 유체가 곡면의 표면을 따라 흐름의 방향이 바뀌는 원리(Coanda Effect)를 이용한 장치로서, 소량의 고압유체를 구동 에너지원으로 사용하여 최고 20배에 해당하는 많은 양의 주변 유체를 빠른 속도로 이송시키는 역할을 한다. 문제는 고압의 유체원을 만드는 것인데, 본 연구에서는 발전용 연료전지 시스템의 배기가스를 활용하여 먼저 고압의 수증기를 발생시키고, 다음으로 고압의 수증기를 공기 증폭기의 구동원으로 사용함으로써 연료전지 시스템의 Air blower를 대체하는 것이다. 이러한 개념을 검증하기 위해서 고압의 스팀작동 Coanda 공기증폭기를 제작하여 선행실험을 진행하였다. 먼저 공기증폭기의 Gap 및 스팀압력에 따른 공기유량, 압력 등의 기본특성을 조사하였고, 출력 공기의 특성을 개선하기 공기증폭기의 형상 및 재료를 새롭게 설계하였다. 그리고 실제 시스템의 적용가능성을 알아보기 위해서, 예로 300kW급 용융탄산염 연료전지 발전시스템의 Air blower 대체가능성을 확인하였고, 배열이용 Coanda 공기증폭기를 활용한 고효율 연료전지 시스템의 개념설계를 수립하였다. 결론적으로 본 기술을 활용하면 연료전지 시스템의 최종 전기효율을 향상시킬 뿐 아니라는 시스템의 장기 신뢰성을 증대시키는 효과를 기대할 수 있다.

  • PDF

연료전지 시스템을 적용한 하이브리드 굴삭기 해석 모델 개발 (Development of Simulation Model for PEMFC Hybrid Excavator)

  • 이세영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.16-22
    • /
    • 2019
  • Due to the rise in energy consumption and natural resource prices, the demand to improve energy efficiency in the construction machine has been highlighted. Even though many researchers have contributed to the development of the technology, CO2 gas emissions of heavy machinery remains high. One of the most significant problems of the novel excavator with internal combustion engines is the emission of harmful gas. To reduce emissions in the construction machine, it is necessary to replace the internal combustion engines with the alternative one. To overcome those problems, this paper focuses on the adoption of PEMFC hybrid engine for the excavator system. An internal combustion engine is replaced by new structures with fuel cell, battery and ultra capacitor. The proposed system has been designed and modeled using Simcenter Amesim software and compared with the conventional one through simulation results.

폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석 (Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam)

  • 잡반티엔;이영덕;김영상;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

표면부착형 영구자석 초고속 전동기의 설계 특성 및 실험 (Design Characteristic and Experiment of Super High Speed Motor for Surface Mounted Permanent Magnet)

  • 송재홍;변지섭;남혁;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.752-754
    • /
    • 2004
  • Super high speed motors and generators are increasing in various applications such as air compressor, gas turbine and fuel cell systems because of small size and light weight at the same power level. This paper presents an experiment and simulation for a permanent magnet synchronous motor(PMSM) in super high speed applications.

  • PDF

고주파 링크 전력계통 연계형 PCS (High Frequency Link PCS for Interfacing with Power Utility System)

  • 김은수;윤광호;강성인;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2008
  • Recently, new technologies of the PCS (Power Conditioning System) for energy generating using solar cells or fuel cell are required for smaller unit with low cost and high performance. In this paper, the proposed high frequency AC linked DC/AC converter which consisted of LLC resonant and LF cycloconverter is presented, described and verified through the experimental results of 1kW PCS.

  • PDF

선박동력용 SOFC/GT 하이브리드시스템의 성능 평가 (터빈 냉각 및 공기극 입구온도 일정 조건을 중심으로) (Performance Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and Constant Temperature in Cathode Inlet))

  • 임태우;길병래;김종수;오세진;박상균;김만응;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1107-1115
    • /
    • 2009
  • 석유에너지의 고갈과 지구온난화 등의 환경적 문제는 대기오염물질 배출규제 강화와 함께 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 대형 선박용으로 적합한 고체산화물형 연료전지/가스터빈 하이브리드시스템의 특성을 분석한 것으로 공기극 입구온도를 일정으로 제어하는 경우에 대한 시스템의 성능 및 안전성 등에 관한 문제를 다루고 있다.

SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성 (Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System)

  • 이병준;배철한
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

분리형 개질기를 이용한 고효율 일체형 개질기 개발에 관한 연구 (Research of High Efficiency Integrated Reforming System Using Separated Reforming System)

  • 박상현;김철민;손성효;장세진;김재동;방완근;이상용
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.11-18
    • /
    • 2018
  • A high efficiency integrated reforming system for improving the efficiency of the 5 kW PEMFC system used as the back up power of building was studied. The separated reforming system consisted of three parts - A steam reformer with two stage concentric circular shape, a heat exchanger type steam generator and a CO shift reactor. Temperature and steam carbon ratio (SCR) were control variables during operation. The operating conditions were optimized based on the thermal efficiency of the steam reformer as reformate gas composition changes at different temperature. In experiments, water was fully vaporized in the steam generator up to SCR 3.5 and the maximum thermal efficiency was achieved at the operating temperature around $700^{\circ}C$ in the steam reforming reactor. With the results of the separated reforming system research, we improved the shape of high efficiency integrated reformer. The performance evaluation of the integrated reformer was based on optimized operating conditions in SCR 3.5. As a result, the developed integrated reforming system maintained an efficiency of 76% and constant performance over 3,000 hours.

2 모듈 스택을 이용한 5kW급 SOFC 시스템 운전결과 (Operation Results of a 5kW-Class SOFC System Composed of 2 Sub-Module Stacks)

  • 이태희;최미화;유영성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.609-615
    • /
    • 2011
  • A 5 kW class SOFC system for cogeneration power units was consisted of a hot box part and cold BOPs. High temperature components such as a stack, a fuel reformer, a catalytic combustor, and heat exchanges are arranged in the bot box considering their operating temperatures for the system efficiency. The hot box was made of ceramic boards for the thermal insulation. A 5 kW class SOFC stack was composed of 2 sub-modules and each module had 64 cells with $15{\times}15cm^2$ area and stainless steel interconnects. The 5 kW class SOFC system was operated with a hydrogen and a city gas. With a hydrogen, the total power of the stacks was about 7.1 kWDC and electrical efficiency was about 49.3% at 80 A. With a city gas, the total power of the stacks was about 5.7 $kW_{DC}$ and electrical efficiency was about 38.8% at 60 A. Under self-sustained operating condition, the system efficiency including a power conditioning loss and a consumed power by BOPs was about 30.2%.

FCEV 구동용 DC-DC 컨버터 가변 DC-link 전압 제어에 의한 PWM 인버터의 전류 왜곡 저감 (Reduction of Current Distortion in PWM Inverter by Variable DC-link Voltage of DC-DC Converter for FCEV)

  • 고안열;김도윤;이정효;김영렬;원충연
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.572-581
    • /
    • 2014
  • A design and control method of DC/DC converter, which can control variable DC-link voltage to drive a fuel cell electric vehicle (FCEV), is proposed in this study. Given that a fuel cell has low-voltage and high-current characteristics, the required voltage for operating motor must be output through the DC/DC boost converter in the system to drive an FCEV. The proposed converter can choose the output voltage of battery or fuel cell in consideration of the driving mode, as well as control DC-link voltage in accordance with the back electromotive force. The switching lag-time to prevent shortage of pulse-width modulation inverter arms makes distorted current waveform caused by voltage distortion. Through this control method, the proposed converter can reduce the output voltage distortion and current ripple of the inverter, thereby reducing the distorted torque. Simulations and experimental results are presented to verify the reliability of the proposed DC/DC converter.