• Title/Summary/Keyword: High-performance facades

Search Result 7, Processing Time 0.022 seconds

Natural Ventilation in High-Rise Building with Double Facades, saving or waste of Energy

  • Lee, Eung-Jik;Pasquay, Till
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.39-45
    • /
    • 2002
  • Double facades are built to allow natural ventilation in high rise buildings and buildings with high outside noise level. In high rise Buildings the gains in summer can be reduced by sufficient sun protection devices placed outside the rooms in the ventilated space between the inner and outer facade. To evaluate the energetic performance, three buildings with double facade were monitored for at least one year (Siemens Building in Dortmund/Germany, Victoria Insurance Company in Duesseldorf/Germany and RWE Tower in Essen/Germany). The results document the indoor climate, the boundary conditions for further planning and the possibilities for high rise buildings without or with little cooling facilities.

Multitasking Façade: How to Combine BIPV with Passive Solar Mitigation Strategies in a High-Rise Curtain Wall System

  • Betancur, Juan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • This paper outlines the processes and strategies studied and selected by the team during the design stages of the project for the incorporation of BIPV into the tower's façade. The goal was to create a system that helps reduce internal heating and cooling loads while collecting energy through photovoltaic panels located throughout the building. The process used to develop this façade system can be broken down into three stages. 1. Concept: BIPV as design catalyst for a high-rise building. 2. Optimization: Balancing BIPV and Human comfort. 3. Integration: Incorporating BIPV into a custom curtain wall design. The FKI Project clearly illustrates the evolution building enclosures from simple wall systems to high performance integrated architectural and engineering design solutions. This design process and execution of this project represent the design philosophy of our firm.

A Study of Automatic Cleaning Tool Design for Façade in High-rise Buildings (고층 건물 외벽 청소용 자동화 기구 기안에 대한 연구)

  • Lee, Jin-Koo;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • Due to the development of construction technology, there is a considerable increase in the number of skyscrapers in the world. Accordingly, there are rapid growing requests about maintenance systems such as cleaning, painting, and monitoring the processes of facade in highrise buildings. However, it is extremely dangerous working the walls of high-rise buildings, and crashes from buildings have accounted for large proportion of constructional accidents. An alternative solution must be developed with the commercialization of automatic robot systems. For the last decade, interest in developing robots for cleaning and maintenance in facade of highrise buildings has continuously increased. The use of automatic robot systems can be expected to reduce accidents and decrease labor costs. In this paper, we propose a new kind of cleaning mechanism. We have designed and manufactured various cleaning tools for different types of facades with economic commercialization. The cleaning cycle, size, and intensity will be determined by economic constraints as well. The final goals are to design and manufacture tools and robots that can clean facades efficiently and rapidly even in dangerous places. The cleaning tool systems consist of nozzles, brush rollers, and squeezing devices. Furthermore, these tools and robots perform each process utilizing the systems of built-in guide types and gondola types for building maintenance. The performance of the proposed cleaning tools is evaluated experimentally; however additional study should be necessary for safer and more stable commercialization.

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

Flammability and Multi-objective Performance of Building Façades: Towards Optimum Design

  • Bonner, Matthew;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The façade is an important, complex, and costly part of a building, performing multiple objectives of value to the occupants, like protecting from wind, rain, sunlight, heat, cold, and sound. But the frequency of façade fires in large buildings is alarming, and has multiplied by seven times worldwide over the last three decades, to a current rate of 4.8 fires per year. High-performing polymer based materials allow for a significant improvement across several objectives of a facade (e.g., thermal insulation, weight, and construction time) thereby increasing the quality of a building. However, all polymers are flammable to some degree. If this safety problem is to be tackled effectively, then it is essential to understand how different materials, and the façade as a whole, perform in the event of a fire. This paper discusses the drivers for flammability in facades, the interaction of facade materials, and current gaps in knowledge. In doing so, it aims to provide an introduction to the field of façade fires, and to show that because of the drive for thermal efficiency and sustainability, façade systems have become more complex over time, and they have also become more flammable. We discuss the importance of quantifying the flammability of different façade systems, but highlight that it is currently impossible to do so, which hinders research progress. We finish by putting forward an integral framework of design that uses multi-objective optimization to ensure that flammability is minimized while considering other objectives, such as maximizing thermal performance or minimizing weight.

Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows (초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교)

  • Choi, Tae-Hwoan;Jeon, Mi-Sook;Lee, Jung-Hyun;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

Multi-Dimensional Hybrid Design and Construction of Skyscraper Cluster -Innovative Engineering of Raffles City Chongqing-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.261-269
    • /
    • 2017
  • Designed by star architect of Moshes Safdie, Raffles City Chongqing includes a total of 6 mega high-rise towers 250 to 380 m tall, a sky conservatory, a 5-storey high shopping mall and a 3-storey basement car parking. Located at the confluence of the Yangtze and Jailing Rivers, the site for the project is imbued with a significance that is immediately symbolic, both as a sign of Chongqing's important past and as a vivid indicator of the city's thriving present and future. The design for the project to be situated at this gateway takes as its governing idea the image of powerful sails upon the water. The outer facades of the project's eight towers - the transparent surfaces that will face the water to the north - are meant to recall a fleet of ancient Chinese ships, with their huge rectangles of white canvas filled by the wind. This is a $1.13million\;m^2$ mega scale integrated project of office, retail, hotel, service residence and high-end residence with the transportation hub and traffic circulation at various levels of the project. This paper presents the multi-dimensional hybrid design, engineering and construction of this mega scale project. The innovations and the cutting-edge technology used in this project are introduced and discussed benchmarking the design and construction of the skyscraper cluster in a major city like Chongqing of China.