• 제목/요약/키워드: High-performance Tall Buildings

검색결과 186건 처리시간 0.022초

A Tall Building Ethos of Integration

  • Lee, Brian
    • 국제초고층학회논문집
    • /
    • 제7권1호
    • /
    • pp.47-64
    • /
    • 2018
  • The last decade has seen great design opportunities for tall building construction around the globe. The best designs represent a new generation of skyscrapers that go beyond willful preconceptions of building form and iconography, trying instead to simultaneously address interrelated issues of program space utility, structural efficiency, and environmentally sustainable systems. The resulting identities of these towers are unique because of their search for the intersection of spaces tuned to people's needs, expressive optimized structures, and high performance, site-responsive systems. This paper, through examples of recent SOM towers, both built and unbuilt, will discuss how a design becomes content-driven, how ideas create value, and how the typology of the tall building is advanced through the integration of architecture design and engineering systems.

Superframed Conjoined Towers for Sustainable Megatall Buildings

  • Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.179-191
    • /
    • 2021
  • Tall buildings have generally been developed as solo towers. With the increase of the heights of tall buildings from about 10-story buildings to supertall and megatall buildings, their structural systems have evolved from interior structures to exterior structures and combined/mixed systems. This paper reviews structural systems developed for solo supertall and megatall buildings and discusses the challenges they face in terms of structural performance and architectural design as the building heights are ever increased. As a viable and more sustainable design alternative to extremely tall solo towers, superframed conjoined towers are presented. Their structural performances are investigated in comparison with solo tower structures. Further, architectural potentials of superframed conjoined towers are explored through design studies.

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

Performance of Seismic Protective Systems for Super-Tall Buildings and Their Contents

  • Kasai, Kazuhiko
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.155-165
    • /
    • 2016
  • A much higher level of seismic performance is needed for supertall buildings due to increased demands for their functional continuities and the recognized needs for their continuing emergence in metropolitan areas. This paper analyzes, compares, and contrasts responses recorded during the 2011 Tohoku-oki Earthquake of different supertall buildings featuring conventional and vibration-controlled engineering systems. The superior performance and advantage of the latter are pointed out, and the typical dynamic properties, response characteristics, and effects on the secondary system are discussed. Ongoing efforts to enhance vibration control performance are described, covering the development of specifications, use of performance curves and targeted displacement design, and methods to find appropriate locations of damper installation resulting in a minimized amount of dampers.

Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation

  • Mathias, Neville;Ranaudo, Francesco;Sarkisian, Mark
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.51-62
    • /
    • 2016
  • The concept of introducing viscous damping devices between outriggers and perimeter columns in tall buildings to provide supplementary damping and improve performance, reduce structural costs, and increase available usable area was developed and implemented by Smith and Willford (2007). It was recognized that the relative vertical movement that would occur between the ends of outriggers and columns, if they were not connected, could be used to generate damping. The movements, and correspondingly damping, can potentially be significantly increased by amplifying them using simple "mechanisms". The mechanisms also make it possible to increase the number of available dampers and thus further increase supplementary damping. The feasibility of mechanisms to amplify supplementary damping and enhance structural performance of tall, slender buildings is studied with particular focus on its efficacy in improving structural performance in wind loads.

Fire & Life Safety Challenges in Sustainable Tall Building Design

  • Li, Fang;Reiss, Martin
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 2013
  • The movement towards sustainable building design can result in unique fire protection challenges and concerns, especially with super tall buildings in relationship to traditional prescriptive code compliance. Different countries haves different code requirements as well as local best practices and may cause conflict with the design features when designing green buildings. These include, but not limited to green roofs, sprinkler water quality and testing, fire department access and areas of refuge with direct or indirect impact by the perspective code compliance. The solutions to these prescriptive code challenges and fire safety concerns can range from simple alternatives to more detailed engineering performance-based design analyses with good solid practice.

The Rational Optimization and Evolution of the Structural Diagonal Aesthetic in Super-Tall Towers

  • Besjak, Charles;Biswas, Preetam;Fast, Tobias
    • 국제초고층학회논문집
    • /
    • 제5권4호
    • /
    • pp.305-318
    • /
    • 2016
  • In the design of super-tall towers, engineers often find the conventional frame systems used in countless buildings in the past decades incapable of providing the required form, performance and constructability demanded by super-tall heights. The strength of the diagrid as a structural system in high-rise towers is the total flexibility it affords the designer as an adaptable, efficient and buildable scheme. Using fundamental engineering principles combined with modern computational tools, designers can take minimum load path forms to create rationalized diagrid geometries to create optimized, highly efficient towers. The use of diagrid frames at SOM has evolved as a structural typology beginning with the large braced frames on the John Hancock Center and continued in modern applications proving to be a powerful system in meeting the demands of supertall buildings.

Considerations of Sustainable High-rise Building Design in Different Climate Zones of China

  • Wan, Kevin K.W.;Chan, Man-Him;Cheng, Vincent S.Y.
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.301-310
    • /
    • 2012
  • Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the context of sustainable development. With more tall buildings constructed in China, the impact on energy consumption and carbon emission would be great from buildings (2% increase of carbon dioxide annually between 1971 and 2004). The imperative was to investigate the building energy performance of high-rise in different climate zones and identify the key design parameters that impose significantly influence on energy performance in sustainable building design. Design implications on glazing performance, sizing of the ventilation fans, renewable energy application on high-rise building design are addressed. Combination of effective sustainable building design strategies (e.g., building envelope improvement, daylight harvesting, advanced lighting design, displacement ventilation, chilled ceiling etc.) could contribute more than 25% of the total building energy consumption compared to the international building energy code.

Performance Based Fire Engineering in Japan

  • Kohno, Mamoru;Okazaki, Tomohito
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.23-30
    • /
    • 2013
  • This paper explains the Japanese present situations relevant to the fire resistance performance. Performance-based fire provisions was introduced in 1998 for the first time when the Building Standard Law was amended. However, performance-based fire resistance design had been used since long before the official introduction of performance-based provisions. A Comprehensive Technology Development Project of Ministry of Construction from 1982 to 1986 established a technical basis for performance-based fire safety engineering in Japan. A system of calculation methods for fire resistance verification was prescribed in the Ministry Notification in 2000 utilizing the results of this project as a background. This method, referred to as the Fire Resistance Verification Method (FRVM), is the standard method to verify the fire resistance performance of principal building parts such as columns, beams, and walls of steel, concrete, or wood structured buildings. For tall buildings, however, more advanced method for performance verification is often necessary because new building materials or structural systems are often used for these buildings. An example project of tall building owned by a major newspaper company is presented in this paper. Advanced thermal deformation analysis is executed to secure the fire resistance of the building.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.