• Title/Summary/Keyword: High-lift system

Search Result 235, Processing Time 0.024 seconds

A Numerica analysis on the lift-off motion of Free Conducting Particle in GIS (GIS내에 함유된 자유 도전성 파티클의 거동해석)

  • Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1925-1928
    • /
    • 1996
  • In this work, the behavior of conducting wire type particles existing inside the cylinder type coaxial electrode has been systematically investigated by charge simulation method and electrostatic force analysis from the view point of the acquired charging before being lifted off into the gap under the high ac voltage. Spheroidal charge are adopted as a image charge for the CSM analysis in order to calculate the acquired charges of the particles which are erected on the surface of the outer electrode. For this purpose, different material of the particle and their lengths and diameters have been considered in view to calculate their lift-off field, acquired charge and to understand their effect on the lift-off voltage. The results imply that the particle lengths and diameter have an different influence on the particle behavior in GIS system.

  • PDF

An Application of Coanda Effect to a Flapped Rudder

  • Ahn, Hae-Seong;Kim, Hyo-Chul;Park, Je-Jun;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.4
    • /
    • pp.23-34
    • /
    • 1999
  • A Coanda effect which is known to provide a high lift in a high drag condition has been applied to a flapped rudder of a ship. Model experiments and numerical simulations on the Coanda effect of the flapped rudder have been carried out at various situations and the results are compared to each other. It I found that a remarkable increase in the rudder force occur due to the Coanda effect and that the results ould be utilized for the design of a high-lift rudder system.

  • PDF

Improved DC Model and Transfer Functions for the Negative Output Elementary Super Lift Luo Converter

  • Wang, Faqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1082-1089
    • /
    • 2017
  • Negative output elementary super lift Luo converter (NOESLLC), which has the significant advantages including high-voltage transfer gain, high efficiency, high power density, and reduced output voltage/inductor current ripples when compared to the traditional DC-DC converters, is an attractive DC-DC converter for the field of negative DC voltage applications. In this study, in consideration of the voltage across the energy transferring capacitor changing abruptly at the beginning of each switching cycle, the improved averaged model of the NOESLLC operating in continuous conduction mode (CCM) is established. The improved DC model and transfer functions of the system are derived and analyzed. The current mode control is applied for this NOESLLC. The results from the theoretical calculations, the PSIM simulations and the circuit experiments show that the improved DC model and transfer functions here are more effective than the existed ones of the NOESLLC to describe its real dynamical behaviors.

Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights (고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션)

  • Hong, Sung-Boo;Kwon, Young-Min;Kim, Ji-Su;Lee, Yu-Been;Park, Byeong-Hyeon;Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

A Feasibility Study on Optimal Lifting Planning in the High-rise Apartment Building Construction (공동주택공사의 건설용 리프트를 이용한 양중계획 타당성 분석)

  • Lee, Jun-Bok;Han, Choong-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • In order to improve work efficiency in high-rise apartment building construction, it is required to establish the major criteria and practical method for selecting the construction lifts. It is necessary to analyze work efficiency and economic feasibility depending on speed, size and capacity of lifting equipment and characteristics of construction projects. The purpose of this research is to develop the fundamental process and information for selecting the lift in order to plan and manage the material lifting and laborers' vertical transporting in the high-rise apartment building projects more effectively. In order to satisfy the objective of the research, work performance of the lifting machines with different speed and carrying capacity is analyzed under the practical constraints. In addition, potential economic evaluation is conducted. One of the significant findings of the research is that the mid-speed lift shows 43% improvement in work efficiency compared with the low-speed lift. The results of the research will be used as the basis for developing the further optimal lifting management system.

Performance Analysis of Stabilizer Fin Applied Coanda System (코안다 시스템이 장착된 안정기용 핀의 성능해석)

  • Seo, Dae-Won;Lee, Se-Jin;Oh, Jungkeun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Stabilizer fins are installed on each side of a ship to control its roll motion. The most common stabilizer fin is a rolling control system that uses the lift force on the fin surface. If the angle of attack of a stabilizer fin is zero or the speed is zero, it cannot control the roll motion. The Coanda effect is well known to generate lift force in marine field. The performance of stabilizer fin that applies the Coanda effect has been verified by model tests and numerical simulations. It was found that a stabilizer fin that applied the Coanda effect at Cj = 0.085 and a zero angle of attack exactly coincided with that of the original fin at α = 26°. In addition, the power needed to generate the Coanda effect was not high compared to the motor power of the original stabilizer fin.

RFID-Based RTLS for Improvement of Loading Productivity in Container Terminals

  • Park, Doo-Jin;Nam, Ki-Chan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.285-290
    • /
    • 2006
  • Shipping companies consider most of the ship turnaround time as a critical factor when selecting a rolling port for reducing costs. So, many researchers have been studying for the optimization of preplanning and high~performance of the Gantry Cranes (GCs) in container terminals for faster loading and unloading. Therefore, in this paper, we propose an RFID (Radio Frequency Identification) based RTLS (Real-Time Location System) for reducing the ship turnaround time in ubiquitous port environment. In addition, pre-planning based on ubiquitous computing environment will support the GC and Yard Tractors (YTs), and reduce ship turnaround time more effectively. Especially, the proposed method enormously enhances the productivity of loading for the twin-lift system It will reduce the whole lead-time in the process of port logistics.

Study of aerodynamic characteristic for a pantograph for Tilting train eXpress (TTX) (고속 틸팅열차의 틸팅 판토그라프 공력 특성 연구)

  • Ko T. H.;Kim G. N.;Goo D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.177-180
    • /
    • 2004
  • The development of a tilting train with construction of electric line on the conventional railway is required for speed-up on the conventional railway with many curving sections. For development of tilting train, the study and development of the tilting system and tilting bogie having the different mechanism with a general high speed train will play a main role for improving the technology in the field of Korean railway The study and development of the pantograph tilting mechanism in order to keep a good contact behavior between a pantograph and a contact wire by tilting a pantograph on the opposite direction of the vehicle tilting direction. In this study, we analyzed the aerodynamic characteristic of a developing pantograph on the tilting train and obtained the contact force with catenary by aerodynamic lift force by the aerodynamic analysis. We also performed the numerical analysis for design the device controlling lift force on a pantograph. From the aerodynamic simulation and parameter study for a device to control the lift force, we will suggest the various shape and the optimal shape of it corresponding to a developing tilting pantograph. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

A Study on the Composite Blade Performance Variation by Attaching Erosion Shield for Hovercraft

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Moon, Kyung-Man;Bae, Chang-Won;Kang, Byong-Yun;Yang, Dong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1017-1025
    • /
    • 2009
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of airfoil from the attachment/non-attachment of blade erosion shield for hovercraft. This study model has used NACA 4412, has designed NACA 4412 by using Auto CAD and designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, we have generated a grid by using GAMBIT and calculated the lift coefficient (Cl) and drag coefficient (Cd) by using the FLUENT code for flow analysis. Through this, we have calculated and compared the lift-to-drag ratio that is an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.