• Title/Summary/Keyword: High-k material

Search Result 10,630, Processing Time 0.048 seconds

High Hydrogen Capacity and Reversibility of K-Decorated Silicon Materials

  • Park, Min-Hee;Ryu, Seol;Han, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1719-1721
    • /
    • 2012
  • We have investigated the $H_2$ adsorption structures and binding energies of the metal (M)-doped (M = Li, Na, K, Mg, and Al) silicon complexes, $M-Si_{19}H_{11}$ and $M-Si_{24}H_{12}$, using density functional calculations. Alkali metals are preferred as doping elements because the Mg-Si and Al-$H_2$ interactions are weak. The maximum numbers of $H_2$ molecules that can be adsorbed are four and five for M=Li and K, respectively. We propose that the K-decorated silicon material might be an effective hydrogen storage material with high hydrogen capacity and high reversibility.

Characterization of Al/$TiO_2$/Si MIS by APCVD (APCVD법으로 증착된 Al/$TiO_2$/Si MIS 특성)

  • Lee, Kwang-Soo;Jang, Kyung-Soo;Kim, Kyung-Hae;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.93-94
    • /
    • 2006
  • 나노급 CMOS 기술에서 high-k 물질을 이용하여 게이트 유전막을 형성하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 high-k 물질인 $TiO_2$의 특성에 대한 연구를 수행하였다. $TiO_2$를 APCVD법으로 p-type 실리콘 기판에 $50{\AA}{\sim}300{\AA}$ 두께로 증착하였고, evaporator를 이용하여 $TiO_2$ 박막위에 Al을 증착하여 MIS소자를 제작하였다. 두께를 가변 하여 Capacitance-Voltage (C-V) 특성을 측정, 분석하였다.

  • PDF

Properties of Organic light-emitting Diodes with various Electron-transporting layers (전자 수송층에 따른 유기 발광 다이오드 소자의 전기적 특성)

  • Lee, Seok-Jae;Park, Jung-Hyun;Seo, Ji-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.436-437
    • /
    • 2007
  • Organic light-emitting diodes (OLEDs) were fabricated with the electron dominant complex, 4,7-diphenyl-1, 10-phenanthroline (Bphen) into the traditional electron transporting material of tris (S-hydroxyquinoline) aluminum $(Alq_3)$, neat $Alq_3$ and Bphen as electron-transporting layers (ETLs), respectively. Use of the Bphen material results in efficient electron injection and transport, allowing for high luminous efficiency devices. The devices with neat $Alq_3$(Device1), 1:1 mixed $Alq_3$ : Bphen(Device2), and Bphen(Device3) have efficiency of 15.3cd/A, 16.9cd/A, 20.9cd/A, respectively, at $20\;mA/cm^2$. The efficiency characteristic of device with Bphen is best, but the device that is satisfied high efficiency and stability at once is observed in Device2.

  • PDF

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

Rubber Material Development and Performance Evaluation of Diaphragm Seal for Steam Generator Nozzle Dam

  • Woo, Chang-Su;Song, Chi-Sung;Lee, Han-Chil;Kwon, Jin-Wook
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.222-228
    • /
    • 2020
  • Rubber materials, used in nuclear power plants, need high heat-oxidation resistance to curing or cracking under a heat aging environment. This is because they are applied to environments with high temperature, high humidity, and radiation exposure. Nuclear radiation causes additional hardening or degradation, therefore, rubber materials need radiation resistance that satisfies the general and any accidental conditions produced in the power plant. Therefore, in this study, we developed a rubber material with excellent heat and radiation resistance for the diaphragm seal of a nuclear steam generator nozzle dam. The rubber material greatly improved the reliability of the steam generator nozzle dam. In addition, 30 inch and 42 inch diaphragm seals were manufactured using the developed rubber material. A nozzle dam was installed in a nuclear power plant and tested under the same conditions as a steam generator to evaluate safety and reliability. In the future, the performance and safety of diaphragm seals developed through field tests of nuclear power plants will be evaluated and applied to currently operating and new nuclear power plants.

Characterization of the Material Properties of Sheet Metal for Auto-body at the High Strain Rate Considering the Pre-strain Effect (예비변형률 효과를 고려한 고변형률 속도에서의 차체용 강판의 물성 특성)

  • Kim, Seok-Bong;Lim, Ji-Ho;Huh, Hoon;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.204-210
    • /
    • 2004
  • Most auto-body members fabricated by the sheet metal forming process. During this process the thickness and material properties of the sheet metal are changed with the residual stress and plastic strain. This paper deals with the material properties of the sheet metal at the high strain rate considering the pre-strain effect. Specimens are selected from sheet metals for outer panels and inner members, such as SPCEN, SPRC45E, SPRC35R and EZNCD. The specimens are prepared with the pre-strain of 2, 5 and 10 % by tensile elongation in Instron 5583, which could be equivalent to the plastic strain in sheet metal forming. High speed tensile tests are then carried out with the pre-stained specimens at the strain rate of 1 to 100/sec. The experimental result informs that the material properties are noticeably influenced by the pre-strain when the yield stress of the specimens is moderate as SPCEN, SPRC35R and EZNCD. The result also demonstrates that the ultimate tensile strength as well as the yield stress is increased as the amount of the pre-strain is increased.

Hot Forging of an Engine Piston using Control Cooling (제어냉각 장치를 이용한 엔진피스톤 열간단조 공정에 관한 연구)

  • Lee, S. I.;Choi, D. H.;Lee, J. H.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.411-417
    • /
    • 2015
  • The piston engine is an essential component in automobiles. Since the piston is used in a high temperature and high pressure environment, the piston needs to be manufactured to achieve high strength and high durability. In addition, cost reduction is also an important consideration. In conventional forging, an additional heat treatment after hot forging is necessary to ensure proper mechanical properties for heavy-duty engine pistons. The newly developed manufacturing method lowers production costs by saving manufacturing time and reduces energy consumption. The current paper describes the hot forging of an engine piston made from 38MnSiVS5 micro-alloyed steel using controlled cooling. The finite element analysis was used to check for possible problems and suitable press capacity. Hot forging experiments were then conducted on a 2500tons crank press to evaluate feasibility of the proposed material and process. To check the mechanical properties after hot forging, the forged specimens were tensile tested, and the microstructures were examined in order to compare the results with the conventionally forged material. The skirt region of the as-forged 38MnSiVS5 piston showed better material properties compared to the conventional material. In addition, the total production time was reduced by about 80% as compared to conventional forging.

Natural Dyeing of Polyester Fabric with Microcapsules(II) - Scutellaria baicalensis - (마이크로캡슐에 의한 폴리에스테르 직물의 천연염색에 관한 연구(II) - 황금을 중심으로 -)

  • Min, Kyung-Hae
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.1045-1050
    • /
    • 2008
  • Developing of high technology, productivity of the fiber product has being rapidly increased and also various kinds of advanced treatment process lead consumer's needs to more high functional, clean and healthy goods. Moreover, increasing in the concern of eco-friendly material and processing, it has been getting popular that the dyeing method like as using natural dyes is more eco-friendly and natural-friendly treatment process. The method, used in this study, adhesion by binding with micro-capsulized natural material to fabric has low change in quality by external influence and high ability in spray effect by broken capsule which comes to pressure and friction when it dressed. Also it has wide application from natural fiber to synthetic fiber. The purpose of this study is development of multi-functional synthetic material with micro-capsulized Scutellaria baicalensis on PET. Moreover, it was driven by comparison of colormetric properties and fastness between regular dip-dyeing method and binding with micro-capsulized material method. Dye ability was arranged mostly low exhaustion but the PET treated by micro-capsule was more or less better than the dip-dyeing PET. Through the SEM(Scanning Electron Microscope) of PET treated by micro-capsule, it has good residence of capsules even after 5 or 10 times washing. Wash and light fastness was arranged some different grade by each condition but mostly high achievement and the micro-capsulized PET was more improved than regular dip-dyed PET.

Optimization for High Efficiency of Point Contact Solar Cell (후면전극형 태양전지의 고효율화를 위한 최적화 연구)

  • Ahn, Byoung-Sub;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.345-350
    • /
    • 2011
  • This paper was carried about optimization for high efficiency of point contact solar cell. We have studied on the characteristics of power converter according to each parameter for the optimization for high efficiency of point contact solar cell on this study. We have 25.1352% of convert efficiency after adapt optimal parameters as mentioned in point body and superior conclusion is drawn by comparison with general efficiency has within 20%. At this time, the value of parameter is 100 um cell pitch, 0.01 um AR coating, 0.9 um N+ FSF thickness., etc. This study will continue to go on for optimization for efficiency in future, as it looks now, the results of this study would contribute to the business of high efficiency of point contact solar cell.

Tribological Characteristics of MoS$_2$Coatings in High Vacuum

  • Kwon, Oh Won;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.91-94
    • /
    • 2000
  • The friction and wear behavior of MoS$_2$coatings was investigated using a pin and disk type tester. The experiment was conducted with silicon nitride as the pin material and MoS$_2$-on-bearing steel as the disk material under different operating conditions that included linear sliding velocities within a range of 2266 mm/sec, normal loads varying from 9.829.4 N, corresponding to maximum contact pressures of 1.782.83 Gpa, and high vacuum, medium vacuum, and ambient air atmospheric conditions. The results showed a low friction coefficient far the coating in a high vacuum, plus the friction coefficient and wear volume increased with an increased normal load. Furthermore, under high load conditions, the friction coefficient and wear volume also increased with an increased sliding velocity.

  • PDF