• Title/Summary/Keyword: High-isolation

Search Result 1,963, Processing Time 0.031 seconds

Image Reversal Photoresist for the Single Isolation Structure of OLEDs (오엘이디의 단열 소자분리 구조를 위한 이미지 라버셜 감광제)

  • Lee, Seung-Jun;Sin, Yun-Su;Chae, Gyeol-Yeo;Im, Dae-U;Choe, Gyeong-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.541-542
    • /
    • 2009
  • We have developed an image reversal photoresist with high thermal stability and electric insulating properties for the single isolation structure of OLEDs. The thermal stability and electric insulating properties are investigated and compared with those of conventional insulator and cathode separator materials. The single isolation structure using the image reversal photoresist reduces the fabrication process steps and cuts down the manufacturing cost.

  • PDF

Single Isolation Structure of High Aperture Ratio for a PMOLED

  • Youn, Suk-Won;Byun, Byung-Hyun;Choi, Kyung-Hee;Yi, Seung-Jun;Choi, Do-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1028-1029
    • /
    • 2006
  • We have developed a self-aligned single isolation structure (SIS) and an asymmetric single isolation structure with an image reversal photoresist to increase the aperture ratio in a passive matrix organic light emitting display (PMOLED). Compared to the conventional structure, the fabrication process is reduced by about 17% and the aperture ratio is enlarged over 4%.

  • PDF

Isolation of Protoplasts from Cultured Cells of Potato (Solanum tubersoum L.) Tuber Tissue (감자(Solanum tuberosum L.) 괴경의 배양세포로부터 원형질체의 분리)

  • 정상호
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • Protopasts were isolated from cultured cells of potato (Solanum tuberosum L.) tuber tissue. The ability of callus formation from the culture cells was higher in cultivars Dejima and Superior than in Shimabara and Irish Cobbler on Lam's medium. Therefore, the former was used as sources for protoplast isolation. Friable calli were transferred to liquid media and cells in exponential phase were used for protoplast isolation. In both of Dejima and Superior, the yield of protoplasts was high in the enzyme solution of 2% Onozuka cellulase and 1% macerozyme. Also, viability of isolated protoplasts was very good. Thus, it seems that these protoplasts would be applicable to various aims of research.

  • PDF

The Study of Static and Dynamic Characteristics for a Isolation Rubber Mount using the Complex Stiffness (고무의 복합강성을 이용한 방진 마운트의 정적ㆍ동적 특성에 관한 연구)

  • 권오병;김종연;김영구;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.927-932
    • /
    • 2001
  • Rubber has high damping and can be formed as various shape according to specific purpose. So, Rubber has widely used as isolation mounts. However, there are still a lot of difficulties in understanding of static and dynamic characteristics of compressed and shear rubber mounts. In this paper, Static characteristics of the rubber isolation mount are observed by the analytical method and FEM. Also dynamic characteristics of rubber mount under compression and shear strain are investigated.

  • PDF

Design of Ohmic Contact RF MEMS Silicon Switch with High Isolation at High Frequencies (고주파에서 높은 신호 격리도를 갖는 접촉식 RF MEMS 스위치의 설계)

  • Lee, Yong-Seok;Jang, Yun-Ho;Kim, Jung-Mu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1509_1510
    • /
    • 2009
  • This paper presents the design and simulation results of ohmic contact RF MEMS silicon switch with a high isolation at high frequencies along with the position of a contact part, initial off-state and intermediate off-state including the state where a contact part is placed right over a signal line of coplanar waveguide (CPW). The ohmic contact part is connected with comb drives made of high resistivity single crystalline silicon. The released contact part is $30{\mu}m$ apart from the edge of signal line on the glass substrate along the lateral direction (x-direction) at initial off-state. The electrostatic force of the comb electrode creates the x-directional movement thus initial state is converted to the intermediate off-state. The initial off-state of the switch results in isolations of -31 dB, -24 dB and reflections of -0.45 dB, -0.67 dB at 50 GHz and 110 GHz, respectively. It shows the isolation degradation when the contact part moves right over the signal line of CPW like an initial off-state of a conventional MEMS switch. The isolations and reflections are -31 dB, -24 dB and -0.50 dB, -1.31 dB at 50 GHz and 110 GHz, respectively at the intermediate off-state.

  • PDF

A Study on Isolated DC-DC Converter of DCM (절연형 DCM DC-DC 컨버터에 관한 연구)

  • Kwak, D.K.;Lee, B.S.;Kim, C.S.;Shim, J.S.;Yu, J.H.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.15-16
    • /
    • 2010
  • This paper is study on a high efficiency DC-DC converter of discontinuous conduction mode (DCM) added electric isolation. The converters of high efficiency are generally made that the power losses of the used semiconductor switching devices is minimized. To achieve high efficiency system, the proposed converter is constructed by using a quasi resonant circuit. The control switches using in the converter are operated with soft switching by quasi resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the system is high. The proposed converter is also added electric isolation which is used a pulse transformer. When the power conversion system is required electric isolation, the proposed converter is adopted with the converter system development of high efficiency. The soft switching operation and the system efficiency of the proposed converter are verified by digital simulation and experimental results.

  • PDF

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

Design and Fabrication of Ka-band Waveguide Combiner with High Efficiency and High Isolation Characteristics (고효율 및 높은 격리 특성을 갖는 Ka 대역 도파관 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • In this paper, a method to increase the combining efficiency and isolation of the combiner, the core module of SSPA (solid state amplifier), was studied. Specifically, the isolation was secured by matching the common port and the isolation port in the waveguide combiner. The matching structure for matching is in the form of a circular disk and is engraved inside the waveguide combiner. The structure is very simple, so it is possible to secure stable performance. And this structure showed more than 60 times higher critical power performance compared to previous studies, confirming that it is suitable for high output. And by combining 1-stage T-junction and 2, 3 stage MagicT combiner, miniaturization was achieved and the combining efficiency was optimized by reducing the insertion loss. The fabricated waveguide coupler obtained an isolation of 16dB or more and a coupling efficiency of 86.2%.

High-performance 94 GHz Single Balanced Mixer Based on 70 nm MHEMTs and DAML Technology (70 nm MHEMT와 DAML 기반의 하이브리드 링 커플러를 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim, Sung-Chan;Lim, Byoung-Ok;Beak, Tae-Jong;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • We reported 94 GHz, low conversion loss, and high isolation single balanced active-gate mixer based on 70 nm gate length InGaAs/InAlAs metamorphic high electron mobility transistors (MHEMTs). This mixer showed that the conversion loss and isolation characteristics were 2.5 ${\sim}$ 2.8 dB and under -30 dB, respectively, in the range of 93.65 ${\sim}$ 94.25 GHz. The low conversion loss of the mixer is mainly attributed to the high-performance of the MHEMTs exhibiting a maximum drain current density of 607 mA/mm, a extrinsic transconductance of 1015 mS/mm, a current gain cutoff frequency ($f_t$) of 330 GHz, and a maximum oscillation frequency ($f_{max}$) of 425 GHz. High isolation characteristics are due to hybrid ring coupler which adopted dielectric-supported air-gapped microstrip line (DAML) structure using surface micromachined technology. To our knowledge, these results are the best performance demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

  • PDF