• Title/Summary/Keyword: High-frequency switching converter

Search Result 552, Processing Time 0.027 seconds

A 10-bit 100 MSPS CMOS D/A Converter with a Self Calibration Current Bias Circuit (Self Calibration Current Bias 회로에 의한 10-bit 100 MSPS CMOS D/A 변환기의 설계)

  • 이한수;송원철;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.83-94
    • /
    • 2003
  • In this paper. a highly linear and low glitch CMOS current mode digital-to-analog converter (DAC) by self calibration bias circuit is proposed. The architecture of the DAC is based on a current steering 6+4 segmented type and new switching scheme for the current cell matrix, which reduced non-linearity error and graded error. In order to achieve a high performance DAC . novel current cell with a low spurious deglitching circuit and a new inverse thermometer decoder are proposed. The prototype DAC was implemented in a 0.35${\mu}{\textrm}{m}$ n-well CMOS technology. Experimental result show that SFDR is 60 ㏈ when sampling frequency is 32MHz and DAC output frequency is 7.92MHz. The DAC dissipates 46 mW at a 3.3 Volt single power supply and occupies a chip area of 1350${\mu}{\textrm}{m}$ ${\times}$750${\mu}{\textrm}{m}$.

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household