• Title/Summary/Keyword: High-frequency excitation

Search Result 271, Processing Time 0.041 seconds

Loosely supported multi-span tube damping according to the support clearance (지지점 간극을 갖는 다점지지 관의 지지점 간극 크기에 따른 감쇠특성 비교)

  • Lee, Kanghee;Kang, Heungseok;Shin, Changhwan;Kim, Jaeyong;Lee, Chiyoung;Park, Taejung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.402-403
    • /
    • 2014
  • Damping of multi-span tube with loose supports according to the finite support clearances is investigated through the experimental modal analysis. Loose intermediate support leads to strong nonlinearity in tube dynamics, provides statistical nature, and increases tube damping through impacting and friction at the supports. Fraction of critical damping was estimated by the modal curve fitting to parameter estimation from the measured frequency response functions. Magnitude of random excitation force, which can reproduce the in-situ excitation in operating environment, was maintained as constant value with a fine tolerance during vibration testing. Range of input force was carefully selected to cover from the low magnitude excitation for linearly behaved tube motion to high magnitude of force for nonlinearly-behaved tube motion. Estimated critical damping ratio shows scatters in data and tends to increase as the magnitude of rising force and decrease with upward frequency variation. Larger size of support gap increases multi-span tube damping for high magnitude of excitation.

  • PDF

Structure Excitation by Using Beating (맥놀이 현상을 이용한 구조물 진동 가진)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1028-1033
    • /
    • 2009
  • To detect faults and monitor thinning on a pipe, many people use ultra sonic sensors that are operated in high frequency range. Because there are many modes in high frequency range, it is difficult to find faults and monitor pipe thinning on a structure. If we deal with signals in a low frequency range which include only A0 wave and S0 wave, the information of monitoring and diagnosis can be easily obtained. In this paper, the technique for exciting low frequency range using ultra sonic sensors is proposed. The main idea of the proposed method comes from the beat phenomenon. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. If the beat frequency is tuned by two ultra waves, we can excite A0 mode and S0 mode of structures. To verify the proposed method, we have performed a steel plate and pipe experiments. Experimental results show that two ultra sonic sensors can well excite low frequency range.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

A Study on Excitation System for Synchronous Generator using Current Mode Controlled PWM Converter (전류제어형 PWM컨버터를 이용한 동기발전기용 여자시스템에 관한연구)

  • 장수진;류동균;서민성;김준호;원충연;배기훈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.151-156
    • /
    • 2002
  • The output voltage of Synchronous Generator is regulated constantly by field current control in excitation system. A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the constant output voltage under normal operating conditions about various levels. High frequency PWM converter (Current Mode Control Buck converter) type excitation system for synchronous generator is able to sustain output voltage level properly when the fault condition happened. This paper deals with the design and evaluation of the excitation system controller for a synchronous generator to improve the steady state and transient stability. The simulation and experimental results show that the proposed excitation system is improve the respons time by the AVR(automatic voltage regulator) of 50kW synchronous generator that is applied the current mode control excitation system.

  • PDF

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

Simple analytical method for predicting the sloshing motion in a rectangular pool

  • Park, Won Man;Choi, Dae Kyung;Kim, Kyungsoo;Son, Sung Man;Oh, Se Hong;Lee, Kang Hee;Kang, Heung Seok;Choi, Choengryul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.947-955
    • /
    • 2020
  • Predicting the sloshing motion of a coolant during a seismic assessment of a rectangular spent fuel pool is of critical concern. Linear theory, which provides a simple analytical method, has been used to predict the sloshing motion in rectangular pools and tanks. However, this theory is not suitable for the high-frequency excitation problem. In this study, the authors developed a simple analytical method for predicting the sloshing motion in a rectangular pool for a wide range of excitation frequencies. The correlation among the linear theory parameters, influencing on excitation and convective waves, and the excitation frequency is investigated. Sloshing waves in a rectangular pool with several liquid heights are predicted using the original linear theory, a modified linear theory and computational fluid dynamics analysis. The results demonstrate that the developed method can predict sloshing motion over a wide range of excitation frequencies. However, the developed method has the limitations of linear solutions since it neglects the nonlinear features of sloshing motion. Despite these limitations, the authors believe that the developed method can be useful as a simple analytical method for predicting the sloshing motion in a rectangular pool under various external excitations.

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

An Analysis of Power System Stability(PSS) Effect with 135MVA Hydro Generator (135MVA 수력 발전기의 전력 시스템 안정화 장치 적용 효과 분석)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Byun, Ill-Hwan;Oh, Sueg-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1100-1104
    • /
    • 2009
  • As national power consumption every year increases, the power plant which is in the process of planning tries to establish high-capacity generator. The power system tends to become a large size. With the progress of electronic components, the control systems of the generator have been digitalized and rapid-response control system is possible. However, the minute frequency vibration of grid occurred with the effect of rapid-response control system. To solve these problem, PPS(Power System Stability) has been introduced since 2004, and it has being installed and applied to the thermal and nuclear power plant which are high-capacity, over 800MVA. However the minute frequency vibration is gradually changed to the bigger frequency vibration by fast-action control system, and this regional frequency fluctuation might be diffused wide area. Therefore, it is applied to the hydro generator which is small with fast-action governor system, and it is necessary to control the minute frequency vibration to prevent to diffuse. In this paper, the effect will be proved by establishing PSS on the Hydro-Generator which has both digital excitation and governor system for the first time in Korea.

Vibration Characteristics of a Wire-Bonding Transducer Horn (와이어 본딩용 트랜스듀서 혼의 진동 특성)

  • Yim, Vit;Han, Dae-Ung;Lee, Seung-Yeop;An, Geun-Sik;Gang, Gyeong-Wan;Kim, Guk-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.583-588
    • /
    • 2007
  • This paper investigates the vibration characteristics of a wire-bonding transducer horn for high speed welding devices. The sample wire-bonder uses the input frequency of 136 kHz. The ultrasonic excitation causes the various vibrations of transducer horn and capillary. The vibration modes and frequencies close to the exciting frequency are identified using ANSYS. The nodal lines and amplification ratio of the ultrasonic horn are also obtained in order to evaluate the bonding performance of the sample wire-bonder system. The FEM results and experimental results show that the sample wire-bonder system uses the bending mode of 136 kHz as principal motion for bonding. The major longitudinal mode exists at 119 kHz below the excitation frequency. It is recommeded that the sample system is to set the excitation frequency at 119 kHz to improve bonding performance.

  • PDF

Comparison of iron loss characteristics between thin-gauged grain-oriented 3% Si-Fe sheets and commercial 0.3 mm-thick grain-oriented electrical sheets (극박 방향성 규소강판과 상용 방향성 규소강판의 철손특성 비교)

  • Cho, Seong-Soo;Kim, Sang-Beom;Soh, Joon-Young;Chae, U-Gyu;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2009_2010
    • /
    • 2009
  • Thin-gauged 3% Si-Fe sheets having a high magnetic induction of over 1.9 T have been developed for the purpose of applications where operation frequency is higher than power frequency. In order to clarify requirements of iron loss characteristics for the applications, iron loss characteristics of the newly developed strip were investigated by iron loss separation method and were compared with those of commercially produced 0.3 mm-thick electrical sheets. In case of relatively high excitation induction(1.7 T) and low frequency(60 Hz), reducing hysteresis loss is effective to decrease total iron loss. In case of relatively low excitation induction(1.0 T) and high frequency(1 kHz), reducing eddy-current loss is effective by decreasing thickness and grain size to improve total iron loss.

  • PDF