• Title/Summary/Keyword: High-density polyethylene

Search Result 364, Processing Time 0.031 seconds

Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

  • Kim, Tae-Han;Choi, Boo-Hun;Kook, Joongjin
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.585-593
    • /
    • 2021
  • Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body. Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens. Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O. Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour (편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가)

  • Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.126-132
    • /
    • 2022
  • Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

Effect of Temperature, Soil Water Potential and Osmoconditioning on Germination and Seedling Elongation of Corn and Soybeans (온도ㆍ토양수분 포텐셜 및 삼투처리가 옥수수와 대두의 발아 및 묘신장에 미치는 영향)

  • Seong, Rak-Chun;Minor, Harry C.;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.56-61
    • /
    • 1986
  • Germination and seedling elongation of maize (Dekalb XL 72B), and soybeans (Williams) were measured at two temperatures (15 and 35$^{\circ}C$), three soil water potentials (-1.50, -0.5, and -0.05 MPa), and four polyethy-lene glycol 8000 (PEG) levels (0, 20, 30, and 50 percent). Twenty conditioned seeds of each cultivar were treated with 0.2% thiram and planted 2 cm deep in sterilized Mexico silt loam soil which was subsequently compacted to a bulk density of 1.20 g/㎤. Seedling moisture content, dry weight, and length were measured for each treatment combination. Osmoconditioning with PEG showed little effect at high temperature or low soil water potential conditions. Soybeans had higher seedling moisture content than corn and both crops in-creased moisture uptake as soil water potential and temperature increased. Seedling length of corn was longer than soybeans at 35$^{\circ}C$ but shorter at 15$^{\circ}C$. Seedling dry weight of corn decreased at 35$^{\circ}C$ and that of soybeans decreased as soil water potential increased.

  • PDF

Adsorption characteristics of Pb by various particle sizes of microplastics in aqueous solution (수용액에서 입자크기에 따른 미세플라스틱의 Pb 흡착특성)

  • Taejung Ha;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.149-149
    • /
    • 2023
  • 미세플라스틱은 입자크기가 5 mm 이하인 플라스틱으로 정의되며, 수계로 유입된 미세플라스틱은 내분비계 교란물질로 작용하여 생태계에 환경독성을 유발하고 오염물질을 흡착·운반할 수 있는 독성 물질의 매개체로서 미세플라스틱의 위해성에 대한 우려가 증가하고 있다. 본 연구는 수용액에서 다양한 미세플라스틱의 납(Pb) 흡착특성을 평가하고 미세플라스틱의 비표면적에 따른 흡착 효과를 비교하고자 하였다. 플라스틱 종류 중 HDPE (High-density Polyethylene)와 PVC (Polyvinyl Chloride)를 각각 세 가지 크기(Group 1: 2.5 mm - 1.0 mm, Group 2: 1.0 mm - 0.3 mm, Group 3: < 0.3 mm)로 제조하여 분류하였으며, 미세플라스틱 입자크기의 비표면적은 BET(Brunauer, Emmett, Teller)분석을 통하여 측정하였다. 담수환경 조성을 위해 pH 7로 조절한 Pb 용액의 농도(0, 0.5, 1, 5, 10, 30 mg/L)별 흡착실험을 수행하였으며 실험결과를 3가지 흡착등온식(Langmuir, Freundlich, Sips 모델)을 사용하여 미세플라스틱에서 Pb 흡착 거동을 나타내었다. BET 분석 측정결과, PVC의 경우 Group 3 > Group 2 > Group 1 순으로 PVC의 입자크기가 작을수록 비표면적이 크게 나타났으며, HDPE 비표면적 또한 비슷한 경향을 보였다. HDPE와 PVC에서 Pb의 흡착은 Langmuir 모델(R2 > 0.97)과 Freundlich 모델(R2 > 0.82)보다 Sips 모델(R2 > 0.98)이 흡착 거동을 설명하기에 가장 적합하였다. 최대흡착능(Qm) 상수는 입자크기가 작아질수록 흡착능이 높아지는 추세를 보였으며, 흡착세기(KF)와 흡착강도(n-1)는 각 플라스틱의 Group 3(HDPE KF = 0.028, PVC KF = 0.032; HDPE n-1 = 0.225, PVC n-1 = 0.547)에서 가장 높게 나타났다. 본 연구를 통해 HDPE와 PVC에서 Pb의 흡착특성은 Sips모델로 설명이 가능했으며, 이에 따라 Pb 흡착과정에 복수의 흡착메커니즘이 작용하고 있음을 유추해볼 수 있었다. 미세플라스틱의 입자크기와 비표면적이 Pb 흡착량에 영향을 미치는 것을 알 수 있었으며, 미세플라스틱이 중금속을 흡착하여 생물체 내로 전이시킬 수 있는 매개체 역할의 가능성을 확인하였다.

  • PDF

Comparative Study on Load Criteria by Class Based on Structural Analysis of 38ft HDPE Power Boat (38ft급 HDPE 파워보트 구조해석을 통한 선급별 하중 기준에 대한 비교 고찰)

  • Byungyoung Moon;Hyeonjin Hong;Dae-Hyeon Kim;Wonmin Lee;Sangmok Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • According to the government policy of environmental regulations, interest of ship, which made with High-Density Polyethylene (HDPE) as a low-carbon and eco-friendly material, is growing as a substitute for the existing fishery boat hull materials such as FRP, aluminum, steel etc. However, regulations related to the production of HDPE ship are still quite incomplete. Even there are no regulations related to structural analysis. Therefore, in this study, structural analysis is carried out by applying different design loads for each international classification for 38ft class HDPE power boats, and the results are compared and analyzed. According to this study, although there is a correlation between the based pressure value and the analysis result value of each class regulation, it is not necessarily proportional. Also, This analysis result shows a difference not only depending on the size of design load, but also application range of the load, the pressure adjustment factor and section shape. However, the occurrence point and trend of the maximum stress values were quite consistent. It is hoped that the results of this study will be used when establishing HDPE ship structure analysis procedures and standards in the future.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Storage Quality of Ready-to-Eat Campbell Table Grapes as Affected by Active Modified Atmosphere Packaging (기체충진 포장조건에 따른 신선편이 캠벨 포도의 저장 중 품질변화)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dongman
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.559-567
    • /
    • 2012
  • The storage quality of ready-to-eat Campbell table grapes which were packaged under modified atmospheres was investigated in order to examine the effect of high $O_2$ and $CO_2$ on the fruit. Fresh table grapes with 10-15 berries were packed into polypropylene (PP) trays and were top-sealed with polythylene terephthalate/PP film. The initial gas compositions inside the packages were air, 20% $O_2$/10% $CO_2$/70% $N_2$, and 40% $O_2$/60% $N_2$. Sealed packages with low density polyethylene film bags and perforated PP trays were also used as a further treatment and control, respectively. The quality attributes were assessed during storage at $5^{\circ}C$ for 28 days. Fruit packaged in high $CO_2$ concentration showed the lowest viable cell counts of inherent microorganisms among all samples, although they suffered from severe off-flavors. High levels of $O_2$ significantly lowered flesh weight loss and maintained the flavor of grape. In an overall sensory aspect, the high $O_2$ and $CO_2$ packages exhibited greater scores than the air and control at the end of the storage period. Other quality attributes showed no significant differences among treatments. Results suggest that packaging with an appropriate combination of high $O_2$ and $CO_2$ can be used as an effective processing treatment for improvement of the storability of ready-to-eat table grapes.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Growth Characteristics of Juvenile Abalone, Haliotis discus hannai by Reared Methods in order to High Density Intermediate Culture in Land-based Tank (육성수조 내 북방전복, Haliotis discus hannai 치패 고밀도 중간양성 사육방식별 성장특성)

  • Lee, Si-Woo;Kim, Byeong-Hak;Park, Min-Woo;Kim, Tae-Ik;Son, Maeng-Hyun
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.83-92
    • /
    • 2015
  • The effect of different intermediated rearing method by expanding the attached floor space in order to highly density culture on the growth characteristics and survival rate of the juvenile abalone, Haliotis discus hannai, were investigated in land-based tanks. The intermediated culture methods was determined thru the shelter counts and layer for 10 month with two replicates : the single layer shelter (SLS), the double layer shelter (DLS), the triple layer shelter (TLS) and the single layer shelter under net cage (SLSNC). In addition, the culture on shallow race way tank had to set up as culture of the ditch raceway tank (CDRT) and the floor race way tank (CFRT). In the growth performance of reared abalone (initial mean shell length $54.18{\pm}7.39mm$ and weight $1.93{\pm}0.14g$) at experimental tanks, that the absolute growth rate (ARG), daily growth rate (DGR) and specific growth rate (SGR) to the shell length and shell breadth was not significant at each experimental tanks except SLSNC. As well as too, weight gain (WG), daily weight gain (DWG) and specific weight gain (SWG) to weight was not significant at each experimental tanks except SLSNC, too. Survival rates of CDRT and CFRT was lower than those of different experimental tanks (P < 0.05). Therefore, these results is showed that high density different intermediated rearing method by expanding the attached floor space for juvenile H. discus hannai was not have difference as growth performance and survival rate both one layer shelter and multi layer shelter. Also, it is considered that shallow race way tank was not useful rearing for the juvenile intermediate culture of H. discus hannai in land based.

Comparative study on the performance of butt fusion-welding processes for nuclear safety class large-diameter thick-walled PE pipes

  • Zhenchao Wang;Bin Wang;Aimin Xiang;Di Jiao;Fa Yu;Qiuju Zhang;Xiaoying Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4184-4194
    • /
    • 2024
  • New technologies in polymer synthesis and pipe extrusion equipment have led to the commercialization of high-performance, large-diameter, thick-wall high density polyethylene (HDPE) pipes. They have been used in the field of seawater transport and cooling to replace metal pipes, due to their advantages of high corrosion resistance and extensibility. Connection of HDPE pipe is important as it determines the safety of the entire piping system. Butt fusion welding is commonly used for HDPE pipe connection but may cause the formation of weak points in the welded joints, interfering the reliability of the pipeline system in the application of nuclear power plants. At present, there is a lack of research on evaluating the performance of welded joint for large-diameter thick-wall HDPE pipes made by butt fusion-welding. The purpose of this study is to investigate the influence of three different butt fusion-welding processes, i.e., single low pressure (SLP), single high pressure (SHP) and dual low pressure (DLP), by evaluating the performance of their welded joints, including characterizing tensile strength, extensibility, crystallinity and hardness. In specific, a thick-wall HDPE pipe with OD of 812.8 mm and wall thickness of 74 mm which is certified for nuclear safety class was used for study. Representative specimen from the outer, middle and inner part across the wall of the main pipe body and welded joints were taken for testing. Different test methods and specimens were designed to assess the feasibility of evaluating the welding performance from different welding process. The results showed that the mechanical properties of different locations of the welded joints were different, and the tensile strength and fracture energy of the middle part of the joint were lower than that of the inner and outer parts, which could be caused by the difference in the crystallinity and thickness of the melting zone influenced by welding processes, as can be seen from the analysis of DSC test and morphology observation. Hardness testing was conducted on the section of the welded joints, and it revealed that the micromechanical properties of the welded joints in the region of the heat-affected zone were enhanced significantly, which may be due to the annealing effect caused by welding process. In summary, The DLP process resulted in the best extensibility of the welded joints among three processes, suggesting that the joining pressure from welding process plays an important role in affecting the extensibility of the welded joints.