• Title/Summary/Keyword: High-Tension Bolted Joints

Search Result 19, Processing Time 0.021 seconds

Estimation of Safety and Economical Efficiency of Large High Tension Bolted Joints (대직경 고장력볼트 이음부의 안전성 및 경제성 평가)

  • Sung, Ki-Tae;Kyung, Kab-Soo;Lee, Seung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.97-105
    • /
    • 2009
  • This study was conducted for the purpose of examinating the safety and economical efficiency of large high tension bolted joints. The specimen using F10T-M30 large high strength bolts has been selected and static tensile test has been conducted to evaluate the slip characteristics. In addition, finite element analysis has been carried out to estimate the number of required bolts. As a result, the average slip coefficient of M30 high strength bolts exceeded 0.4 - the standard in highway bridge design specification - and has satisfied the slip strength, which is the same as that of M22 high strength bolts. In addition, if F13T-M22 high strength bolts were applied, the number of required bolts decreased by 21%, and if F10T-M30 high strength bolts were applied, the number of required bolts decreased by 46%, that leads to the conclusion that the economical efficiency in accordance with diametering of high strength bolts was now verified.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

Analysis of Bolted Joints for Plate Girder using Connector element (Connector 요소를 이용한 플레이트 거더 볼트이음부의 해석)

  • Hwang, Won-Sup;Min, Seon-Young;Kim, Hee-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.367-375
    • /
    • 2011
  • In this study, structural behavior of bolted joints which were important elements in plate girder design was analyzed using commercial FE analysis program. Also, the numerical analysis method that simply showed behavior of bolts was proposed using the connector element of ABAQUS, nonlinear FE program. Numerical analysis was conducted to verify the proposed numerical analysis method on the basis of the experiment of previous study. In order to investigate effects of action force which was changed by locations of the bolted joints, the three different models were developed by the locations of the bolted joints and behavior for the each model was compared and analyzed by various design parameters (area of splice plates, stiffness of splice plates, and stiffness of bolts). The moment-displacement relations of structures for the various design parameters were investigated to analyze effects of each parameter in ultimate behavior of the structures. Also, the effects of each parameter were compared by force.

An Analytical Study for the Strength of the High Tension Bolted Joints in Plate Girder (Plate Girder 볼트 이음부 강도에 관한 해석적 연구)

  • Ham, Jun-Su;Hwang, Won-Sup;Yang, Sung-Don;Chung, Jee-Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.469-478
    • /
    • 2012
  • In this study, structural behavior of high tension bolted connections was analyzed in order to investigate effective utilizations. Also, the simplified numerical analysis method showing bolt behavior was proposed using the connector element in the ABAQUS, a nonlinear finite element program and verified by numerical analyses on the basis of the experiment of previous study. In an effort to analyze strength properties of plate girder which high tension bolts are applied to, the effects of each design parameter were compared and analyzed after moment-displacement relations were investigated according to design parameters (upper flange, lower flange, upper and lower flange, web) by action force standards.

A Study on the Characteristics of High-Tension Bolted Joints' Behavior due to Surface Condition (표면상태에 따른 고장력볼트 마찰이음부의 거동특성에 관한 연구)

  • Cho, Sun Kyu;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.421-430
    • /
    • 1997
  • In this study, the static and the fatigue tests were performed with high tension bolted joints, of which the surfaces were spread with inorganic zinc-primer after shot-blast, and milling surface, and steel-natural surface, difference of friction surface condition were examined by comparing the esults of tests. From the result of synthetical investigation of this study. it is proper that using the torque management method in order to introduce design axial force to blots, and the provision of specifications that initial axial forces must be 110% of design axial forces is proper. Decreasing ratio of axial forces to initial force is proportional to common lorgarithms of time progress, it converge constant value after 20 hours, and decreasing ratio is little related to the roughness of friction surface. Sliding coefficient of milling, spreading inorganic zinc-primer, just producting is great in order and sliding forces are dependent on the applied axial forces, but if the applied axial forces are great, sliding coefficient become small by a loss of roughness. So it is confirmed that relation between the applied axial forces and the sliding forces are not proportional linearly. From the result of estimation on fatigue strength, all specimens satisfy the specifications with B-grade and milling surface is lower than the others about 14% in fatigue strength because in milling surface lose the function of friction-types joints at lower number of cycles. From the result of eximination for the distribution area of compressive force, friction area near to inside bolt is wider in the direction of stress than near to outside. It is guessed that this situation occurs because outside bolts firstly change from the friction connection to the bearing connection.

  • PDF

Mechanical Behavior of High-tension Bolted Joints with Varying Bolt Size and Plate Thickness (볼트의 크기 및 판두께의 차이에 따른 고장력볼트 이음부의 역학적 거동에 관한 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Sung Hoon;Park, Cheol Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.67-74
    • /
    • 2006
  • The use of steel plates has been greatly increased in bridge construction, particularly for long-span bridges. For connections of those steel plates in the field, application of high-tension bold, such as M30, is highly demanded. However, the current steel construction specifications in Korea do not provide information for large-sized bolt connections. In order to evaluate the applicability of the large-sized high-tension bolt, this study experimentally investigates relaxation and slip behavior of M30 bolts with varying bolt size and plate thickness. In addition, internal compressive stress was computed using FEM analysis. The analyzed results were compared with the stress distribution measured from strain gages attached on bolts and bolt holes. From the study presented herein, the M30 high-tension bolts are anticipated to be successfully used with the relaxation less than 10% and the slip coefficient satisfying the specified limit.

Evaluating long-term relaxation of high strength bolts considering coating on slip faying surface

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.703-718
    • /
    • 2014
  • The initial clamping forces of high strength bolts subjected to different faying surface conditions drop within 500 hours regardless of loading, any other external force or loosening of the nut. This study develops a mathematical model for relaxation confined to creep on a coated faying surface after initial clamping. The quantitative model for estimating relaxation was derived from a regression analysis for the relation between the creep strain of the coated surface and the elapsed time for 744 hours. This study establishes an expected model for estimating the relaxation of bolted joints with diverse coated surfaces. The candidate bolts are dacro-coated tension control bolts, ASTM A490 bolt, and plain tension control bolts. The test parameters were coating thickness, species of coating. As for 96, 128, 168, and $226{\mu}m$ thick inorganic zinc, when the coating thickness was increased, relaxation after the initial clamping rose to a much higher range from 10% to 18% due to creep of the coating. The amount of relaxation up to 7 days exceeded 85% of the entire relaxation. From this result, the equation for creep strain can be derived from a statistical regression analysis. Based on the acquired creep behavior, it is expected that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force. The manufacturer's recommendation of inorganic zinc on faying surface as $75{\mu}m$, appears to be reasonable.

Estimation of Long Term Clamping Force of High Strength Bolts By Coating Thickness Parameters of Slip Faying Surfaces (미끄럼 표면 도막두께변수에 따른 고력볼트 장기축력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • The initial clamping forces of high strength bolts depending on different faying surface conditions drop within 1,000 hours regardless of loading, any other external force or loosening of the nut. This study is focused on an expectation model for relaxation of high strength bolt, which is confined to creep on coated faying surfaces after initial clamping. The range of this experiment is limited to estimate the relaxation of bolted joints coated by inorganic zinc primer. The candidate bolts were dacro-coated tension control bolts. The parameters of coated thickness for the faying surface were 96, 168,and $226{\mu}m$ respectively. From experiments, it exhibited that the logarithmic function for creep strain was derived due to the parameter of coating thickness. By using the creep strain, subsequently the quantitative model for estimating long term relaxation of high strength bolt can be taken with the elapsed time. The experimental results showed that the relaxation after the initial clamping of high strength bolt rose to a much higher range from 10% to 18% due to creep of the coating as the coating thickness was increased. This study showed that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force of high strength bolt.

An Experimental Study on the Structural Characteristics of Tension Joints with High-Strength Bolted Split-Tee Connection (고력볼트 스플릿-티 인장접합부의 구조성능에 관한 실험적 연구)

  • Choi, Sung Mo;Lee, Seong Hui;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.737-745
    • /
    • 2004
  • In general, most of the beam-to-column connections for steel structures are regarded as either rigid connections or pin connections. Recently, the concept of a semi-rigid connection was introduced for a correct analysis of steel structures. Several experimental and theoretical researches have been performed regarding the structural behaviors of frames and buildings with semi-rigid connections. The results are not well known, and structural frame/building has not been designed to introduce the concept of semi-rigid connections between a beam and column until this time. To resolve this, this research depends on design specifications prepared by other advanced countries for the design of buildings with semi-rigid connections. Such a specification, however, should incorporate domestic characteristics of steel material properties and load conditions. This paper deals with structural capacities and deformable behaviors for a split-T tensile connection with F10T high-strength bolts to investigate the structural characteristics of semi-rigid frames. The experimental parameters include the thickness of T-flanges, painted or not, preloaded or not, and load pushover pattern. A total of 20 specimens were fabricated and tested with a 300-ton UTM. The structural capacities and behavior for split-T tensile connections were evaluated on each research parameter.