• 제목/요약/키워드: High-Temperature Oxidation

검색결과 1,131건 처리시간 0.027초

A Effect of the Oxidation Process on the Lifetime Properties of Ag-CdO Contact Materials (산화 방식이 Ag-CdO계 전기접점재료의 수명 특성에 미치는 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • 제25권6호
    • /
    • pp.233-239
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO has a good wear resistance and stable contact resistance. We studied a lifetime of Ag-CdO material because of getting better properties of Ag-CdO using Post-oxidation. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. Then we tested a lifetime and analysed. We obtained the optimizing oxidation temperature was $750^{\circ}C$. Using Pre-oxidation, coarse oxide and depleted oxidation layer existed but finer oxides were existed and depleted oxidation layer was not using Post-oxidation. In Post-oxidation, The density was 10 $g/cm^{3}$, the hardness was Hv 80 and the adhesive strength was 9000N. The specimen of Post-oxidation had better lifetime properties than that of Pre-oxidation. We predicted that the lifetime of Post-oxidation specimen is more longer twice than that of Pre-oxidation one.

Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element. (미량 Ni 함유 저 합금강의 고온초기 산화거동)

  • 손근수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

Study on Oxidation Behavior of (W,Mo)$Si_2$ Powders in Air at 400, 500 and $600^{\circ}C$

  • Peizhong, Feng;Xuanhui, Qu;Xiaohong, Wang;Farid, Akhtar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1149-1150
    • /
    • 2006
  • The oxidation of (W,Mo)$Si_2$ powders has been investigated at 400, 500 and $600^{\circ}C$ for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo)$Si_2$ was worse than that of $MoSi_2$, and they showed great changes in mass, volume and colour. Especialy at $500^{\circ}C$, the amount of volume expansion of (W,Mo)$Si_2$ was as high as about $7\sim8$ times and color changed from black to yellow after 4.0h with $MoO_3$, $WO_3$, (W,Mo)$O_3$ and amorphous $SiO_2$ as main reaction products. The mass gain and oxidation rate were relatively slower at $400^{\circ}C$ and $600^{\circ}C$ than that at $500^{\circ}C$.

  • PDF

A Study on the Synthesis of Oxidized Polyethylene Wax by Controlling Reaction Parameters (공정변수를 조절한 폴리에틸렌 산화왁스 합성에 관한 연구)

  • Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • 제20권2호
    • /
    • pp.141-147
    • /
    • 2003
  • Oxidized polyethylene wax is obtained by oxidation of polyethylene wax and it is composed of various chemicals, e.g., fatty acid, alcohol, ketone and ester. The application of oxidized polyethylene wax is determined by the composition of these chemical substances. In this basic study we observed the basic reaction parameters of time, temperature, oxygen concentration and catalysts on the oxidation reaction of low molecular weight polyethylene(PE wax) by analyzing the acid value, physical and chemical properties of oxidized PE wax to develop a new oxidation process. Acid values are increased with temperature increase in the rage of $150^{\circ}C^{\sim}180^{\circ}C$ but decreased beyond 190$^{\circ}C$. Acid values are also increased with oxygen concentration. As the oxidation reaction proceeds the molecular weight and softening points of oxidation products are decreased by cracking reaction, but the viscosities are increased. To observe the crystallinity of oxidation products SEM experiment was performed. To obtain a high acid-value product in a mild condition, we adopted free radical catalysts and the acid value of the product using catalyst was higher than the product obtained without catalyst in the same reaction condition. The effective initiators were dicumyl peroxide(DCPO), t-butylperoxy-2-ethyl hexanoate(HOPO) and benzoyl peroxide(BPO) having long half-life.

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications

  • Arshad, Javeria;Janjua, Naveed Kausar;Raza, Rizwan
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.112-125
    • /
    • 2021
  • The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.

Production of Hydrogen from Methane Using a 3 Phase AC Glidarc Discharge (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제18권2호
    • /
    • pp.132-139
    • /
    • 2007
  • Popular techniques for producing synthesis gas by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and for application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC Glidarc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Glidarc plasma reformer was consisted of 3 electrodes and an AC power source. And air was added for the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 36.2% and 35.2% respectively.

Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature (금속담지 활성알루미나 촉매의 암모니아 저온연소반응)

  • Lim, Yun-Hui;Lee, Ji-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • 제30권3호
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.

Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향)

  • Ryu, Ho-Jung;Park, Sang-Soo;Moon, Jong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제23권2호
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

Effects of Post Annealing and Oxidation Processes on the Shallow Trench Etch Process (Shallow Trench 식각공정시 발생하는 결함의 후속열처리 및 산화곤정에 따른 거동에 관한 연구)

  • 이영준;황원순;김현수;이주옥;이정용;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • 제31권5호
    • /
    • pp.237-244
    • /
    • 1998
  • In this stydy, submicron shallow trenches applied to STI(shallow tench isolation) were etched using inductively coupled $CI_2$/HBr and $CI_2/N_2$plasmas and the physical and electrical defects remaining on the etched silicon trench surfaces and the effects of various annealing and oxidation on the removal of the defects were studied. Using high resolution electron microscopy(HRTEM), Physical defects were investigated on the silicon trench surfaces etched in both 90%$CI_2$/ 10%$N_2$ and 50%$CI_2$/50%HBr. Among the areas in the tench such as trench bottom, bottom edge, and sidewall, the most dense defects were found near the trench bottom edge, and the least dense defects were found near the trench bottom edge, and least dense defects compared to that etched with ment as well as hydrogen permeation. Thermal oxidation of 200$\AA$ atthe temperature up to $1100^{\circ}C$apprars not to remove the defects formed on the etched silicon trenches for both of the etch conditions. To remove the physicall defects, an annealing treatment at the temperature high than $1000^{\circ}C$ in N for30minutes was required. Electrical defects measured using a capacitance-voltage technique showed the reduction of the defects with increasing annealing temperature, and the trends were similar to the results on the physical defects obtained using transmission electron microscopy.

  • PDF

Deposition and high temperature oxidation characterization of CrAlSiN thin films

  • Kim, Sun-Kyu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.7-9
    • /
    • 2007
  • Thin films of CrAlSiN were deposited on SKD11 tool steel substrate using Cr and AlSi cathodes by a cathodic arc plasma deposition system. The influence of process parameters on the deposited film properties were investigated. The oxidation characteristics of the films were studied at temperatures ranging from 800 and 1000+C up to 50 h in air. The films showed superhardness and good oxidation resistance..

  • PDF