• 제목/요약/키워드: High-Temperature Oxidation

검색결과 1,130건 처리시간 0.032초

HVOF 열용사에 의한 크롬 카바이드 코팅의 마모.마찰거동 (Tribological Behaviors of Chromium Carbide Coatings by HVOF Thermal Spraying)

  • 김장엽;임대순;이상로;변응선;이구현
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1315-1321
    • /
    • 1995
  • The optimal coating condition for chrominum carbide coating was selected by Taguchi method. The wear tests with coated specimens by HVOF method were performed in the temperature to 80$0^{\circ}C$. Applied normal loads were selected to be from 8N to 30N. The worn surfaces and subsurfaces were characterized by XRD, EPMA, AES and SEM. The wear track increased with increasing applied normal load, and in terms of the temperature range from 400 to $600^{\circ}C$, below that range, the wear track increased, and above that temperature ragne, the wear track decreased. The degree of oxidation caused by the test temperature and the frictional heating was responsible to the unique high temperature wear behavior chromium carbide coatings.

  • PDF

650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향 (Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

High Temperature Properties of $Si_3N_4-Re$Silicon Oxynitride (Re=Y, Yb, Er, La) Ceramics

  • Park, Heon-Jin;Lee, June-Gunn;Kim, Young-Wook;Cho, Kyeong-Sik
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.211-216
    • /
    • 1999
  • Four different $\beta-Si_3N_4$ ceramics with silicon oxynitrides $[Y_10(SiO_4)_6N_2, Yb_4Si_2N_2O_7, Er_2Si_3N_4O_3, \;and La_{10}(SiO_4)_6N_2$, respectivley] as secondary phases have been fabricated by hot-pressing the $Si_3N_4-Re_4Si_2N_2O_7$ (Re=Y, Yb, Er, and La) compositions at $1820^{\circ}C$ for 2h under a pressure of 25 MPa. The high temperature strength and oxidation behavior of the hot-pressed ceramics were characterized and compared with those of the ceramics fabricated from $Si_3N_4-Si_2O_7$ compositions. The $Si_3N_4-Re_4Si_2N_2O_7$composition investigated herein showed comparable high temperature strength to those from $Si_3N_4-Re_2Si_2O_7$ compositions. Si3N4 ceramics from a $Si_3N_4-Y_4Si_2N_2O_7$ composition showed the highest strength of 877 MPa at $1200^{\circ}C$ among the compositions. All $Si_3N_4$ ceramics investigated herein showed a parabolic weight gain with oxidation time at $1400^{\circ}C$ and the oxidation products of the ceramics were $SiO_2$ and $Re_2Si_2O_7$. The $Si_3N_4-Re_4Si_2N_2O_7$ compositions showed inferior oxidation resistance to those from $Si_3n_4-Re_2Si_2O_7$ compositions, owing to the incompatibility of the secondary crystalline phases of those ceramics with $SiO_2$, the oxidation product of Si3N4.Si3N4 ceramics from a $Si_3N_4-Er_4Si_2N_2O_7$ composition showed the best oxidation resistance of 0.375mg/$\textrm{cm}^2$ after oxidation at $1400^{\circ}C$ for 102 h in air among the compositions.

  • PDF

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Reactive molecular dynamics study of very initial dry oxidation of Si(001)

  • Pamungkas, Mauludi Ariesto;Joe, Minwoong;Kim, Byung-Hyun;Kim, Gyu-Bong;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.325-325
    • /
    • 2011
  • Very initial stage of oxidation process of Si (001) surface at room temperature (300 K) and high temperature (1200 K) was investigated using large scale molecular dynamics simulation. Reactive force field potential [1] was used for the simulation owing to its ability to handle charge variation as well as breaking and forming of bonds associated with the oxidation reaction. The results show that oxygen molecules adsorb dissociatively or otherwise leave the silicon surface. Initial position and orientation of oxygen molecule above the surface play important role in determining final state and time needed to dissociate. At 300 K, continuous transformation of ion $Si^+$ (or suboxide Si2O) to $Si2^+$ (SiO), $Si3^+$ (Si2O3) and finally to $Si4^+$ (SiO2) clearly observed. High temperature silicon surface provide heat energy that enable oxygen atom to penetrate into deeper silicon surface. The heat energy also retards adsorption process. As a result, transformation of ion $Si^+$ is impeded at 1200 K.

  • PDF

알루미늄 확산코팅재료의 주기산화 특성에 관한 연구 (A Study on the Cyclic Oxidation Properties of Aluminum Diffusion Coated Materials)

  • 강석철;민경만;김길무
    • 한국표면공학회지
    • /
    • 제32권1호
    • /
    • pp.49-60
    • /
    • 1999
  • The protective oxide scales and coatings formed on high temperature materials must be preserved in high temperature atmosphere. And the thermal stresses induced by thermal cycling and the growth stresses by the formation of oxide scales can cause the loss of adherence and spalling of the oxide scales and coated layers. Among the coating processes Al diffusion coating is favored due to thermochemical stability and superior adherence in an hostile atmosphere. In this study, protective oxide forming element, Al was coated on Ni, Inconel 600 and 690 by diffusion coating process varying coating temperature and time. And the surface stability and adherence of oxide scales formed on those Al diffusion coated materials were evaluated by thermal cycling test. Al diffusion coated specimens showed superior cyclic oxidation resistance compared to bare ones and specimens coated for longer period had better cyclic oxidation resistance, due to the abundant amount of Al in the coated layer. Meanwhile Al diffusion coated Inconel 600 and 690 showed improved cyclic oxidation resistance by the effect of Al in the coated layer and Cr in the substrate. Comparing both Al diffusion coated Inconel 600 and 690, Al diffusion coated Inconel 690 maintained better adhesion between coated layer and substrate by virtue of the bridging effect resulting from the segregation of Cr in the interdiffusion zone.

  • PDF

High Temperature Oxidation Behavior of Nickel and Iron Based Superalloys in Helium Containing Trace Impurities

  • Tsai, C.J.;Yeh, T.K.;Wang, M.Y.
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.8-15
    • /
    • 2019
  • A high-temperature gas-cooled reactor (HTGR) is recognized as the best candidate reactor for next generation nuclear reactors. Helium is used to be the coolant in the core of the HTGR with temperature expected to exceed $900^{\circ}C$ at the core outlet. Several iron- and nickel-based superalloys, including Alloy 800H, Hastelloy X, and Alloy 617, are potential structural materials for intermediate heat exchanger (IHX) in an HTGR. Oxidation behaviors of three selected alloys (Hastelloy X, Alloy 800H, and Alloy 617) were investigated at four different temperatures from $650^{\circ}C$ to $950^{\circ}C$ under helium environments with various concentrations of $O_2$ and $H_2O$. Preliminary results showed that chromium oxide as the primary protective layer was observed on surfaces of the three tested alloys. Based on results of mass gain and SEM analyses, Hastelloy X alloy exhibited the best corrosion resistance in all corrosion tests. Further details on the oxidation mechanism of these alloys are presented in this study.

Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화 (High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$)

  • 이득용;김대준;조경식
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

진공 플라즈마 용사법을 통해 형성된 NiCoCrAlY 오버레이 코팅의 반복 산화 거동 (Cyclic Oxidation Behavior of Vacuum Plasma Sprayed NiCoCrAlY Overlay Coatings)

  • 유연우;남욱희;박훈관;박영진;이성훈;변응선
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.283-288
    • /
    • 2019
  • MCrAlY overaly coatings are used as oxidation barrier coatings to prevent degradation of the underlying substrate in high temperature and oxidizing environment of the hot section of gas turbines. Therefore, oxidation resistance in high temperature is important property of MCrAlY coatings. Also, coefficients of thermal expansion (CTE) of MCrAlY have middle value of that of Ni-based superalloys and oxides, which have the effect of preventing the delamination of the surface oxides. Cyclic oxidation test is one of the most useful methods for evaluating the high temperature durability of coatings used in gas turbines. In this study, NiCoCrAlY overlay coatings were formed on Inconel 792(IN 792) substrates by vacuum plasma spraying process. Vacuum plasma sprayed NiCoCrAlY coatings and IN 792 susbstrates were exposed to 1000℃ one-hour cyclic oxidation environment. NiCoCrAlY coatings showed lower weight gain in short-term oxidation. In long-term oxidation, IN 792 substrates showed higher weight loss due to delamination of surface oxide but NiCoCrAlY coatings showed lower weight loss. X-ray diffraction (XRD) analysis showed α-Al2O3 and NiCr2O4 was formed during the cyclic oxidation test. Through cross-section observation using scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) analysis, thermally grown oxide (TGO) layer composed of α-Al2O3 and NiCr2O4 was formed and the thickness of TGO increased during 1000℃ cyclic oxidation test. β phase in upper side of NiCoCrAlY coating was depleted due to oxidation of Al and outer beta depletion zone thickness also increased as the cyclic oxidation time increased.