• Title/Summary/Keyword: High-Temperature Environmental Test

Search Result 367, Processing Time 0.024 seconds

A Study on the Promotion Time in Environmental Temperature Test (내환경 온도시험의 촉진시간에 관한 연구)

  • Han, Chul-Ho;Kim, Kyoung-Hoon;Kim, Hyoung-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.325-331
    • /
    • 2011
  • A new method to predict the proper promotion time on the near-step-temperature test profile when heating or cooling the test-piece in a test chamber to the test temperature for environmental tests has been proposed by using the lumped analysis. For a given test condition the analysis shows the existence of a promotion time that reduces the testing time and saves energy. The theoretical results are in reasonably good agreements with experimental results for steel specimens. The suggested promotion time is approximately proportional to the mass/surface area of the test-piece for a given material.

Development of Micro Displacement Extensometer for Environmental Fatigue Test in a High Temperature and High Pressure Autoclave (고온고압 환경피로실험 오토클래이브 내부용 미소변위 측정장치 개발)

  • Jeong, Ill-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik;Kim, Young-Sin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.368-371
    • /
    • 2008
  • An extensometer system to measure strain and displacement of cylindrical fatigue specimen in a autoclave of high temperature and high pressure environment has been developed by KEPRI. The extensometer reads the displacement caused by fatigue loads at the target length of the specimen installed inside the autoclave. The performance of the extensometer were tested at 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. Two LVDT's of magnet type were connected to the extensometer and used for converting the fatigue displacement to electronic signal. The device is being used for developing environmental fatigue curve of CF8M cast austenitic stainless steel (CASS) in the test condition of low cycle and low strain. This paper introduces the background and results of the development.

  • PDF

A Study on Thermal Environmental Performance Test of the Rotary Compressor Stirling Cryocooler (회전압축기형 스털링 냉동기의 열환경 성능시험에 관한 연구)

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Kimm, Dae-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1953-1958
    • /
    • 2007
  • This paper presents the results of a series of performance tests for the integral Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate environmental specification. Integral Stirling cryocooler for thermal imaging system have matured to the stage of undergoing formal qualification test program. The thermal environmental test of the Stirling cryocooler is presented in this paper. We performed that low and high temperature keeping test from $-40^{\circ}C$ to $+71^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooldown time to 80K and steady state input power at 80K were determined as a function of cooler components temperatures at the compressor, hot end and cold tip. Tests performed on this cooler have been successful with a measured cooldown time to 80K of less than 5 minutes 24seconds for $71^{\circ}C$ ambient temperature with input power of 11W

  • PDF

Evaluation of temperature effects on brake wear particles using clustered heatmaps

  • Shin, Jihoon;Yim, Inhyeok;Kwon, Soon-Bark;Park, Sechan;Kim, Min-soo;Cha, YoonKyung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.680-689
    • /
    • 2019
  • Temperature effects on the generation of brake wear particles from railway vehicles were generated, with a particular focus on the generation of ultrafine particles. A real scale brake dynamometer test was repeated five times under low and high initial temperatures of brake discs, respectively, to obtain generalized results. Size distributions and temporal patterns of wear particles were analyzed through visualization using clustered heatmaps. Our results indicate that high initial temperature conditions promote the generation of ultrafine particles. While particle concentration peaked within the range of fine sized particles under both low and high initial temperature, an additional peak occurred within the range of ultrafine sized particles only under high initial temperature. The timing of peak occurrence also differed between low and high initial temperature conditions. Under low initial temperature fine sized particles were generated intensively at the latter end of braking, whereas under high initial temperature both fine and ultrafine particles were generated more dispersedly along the braking period. The clustered correlation heatmap divided particle sizes into two groups, within which generation timing and concentration of particles were similar. The cut-off point between the two groups was approximately 100 nm, confirming that the governing mechanisms for the generation of fine particles and ultrafine particles are different.

Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig (DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성)

  • Oh, Kwang-Chul;Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

Genetic algorithm-based yield stress equations for concrete at high temperature and prolonged mixing time

  • Martini, S. Al;Nehdi, M.
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.343-356
    • /
    • 2009
  • Experiments were designed to investigate the flow behavior of portland cement paste and concrete incorporating superplasticizers. The paste and concrete mixtures were subjected to prolonged mixing for up to 110 min at high temperature. The yield stress values of concrete and that of the corresponding cement paste were measured using a rotating rheometer and viscometer, respectively. The results reveal a weak linear correlation between the yield stress of concrete mixtures and that of the corresponding cement pastes. Results also indicate that the yield stress of concrete varies in a linear fashion with the elapsed time, while its variations with the temperature and superplasticizer dosage follow power and inverse power functions, respectively. In this study, the genetic algorithms (GA) technique was used to predict the yield stress of concrete considering various parameters, such as the mixing time, ambient temperature, and superplasticizer dosage. A sensitivity study was conducted to evaluate the ability of the GA equations thus developed to capture the effects of test parameters on the yield stress of concrete. It was found that the GA equations were sensitive to the effects of test parameters and provided yield stress predictions that compared well with corresponding experimental data.

Rapid Bioassay Technique Based on Temperature Control of Ceriodaphnia dubia (Ceriodaphnia dubia의 온도조절에 근거한 단기급성독성 조사법)

  • PARK Jong Ho;LEE Sang Ill;CHO Young Oak;LEE Won Ho;YEON Ik Jun;CHO Kyu Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2004
  • A method for rapid acute toxicity test based on temperature control of Ceriodaphnia dubia has been developed and evaluated. A new toxicity test based on temperature control (TTBTC) which are based on temperature control, was developed and compared for the adsorption of the better methodology for short-term toxicity screening. Initially, daphnid larval are exposed to toxicants and at the same time the temperature of the water bath containing media is increased to high temperature $(35.5^{\circ}C).$ After 1.25 hrs of contact time, the number of the daphnids, either living (no toxic effect) or dead (toxic effect), is counted by the naked eyes. Effect of exposure time on test sensitivity was not significantly different between 1 to 1.5 hr. Comparison of the rapid 1.25 hr acute toxicity test developed in this study and the standard 48 hr acute toxicity test using heavy metals, cyanide and pentachlorophenol indicated that the 1.25 hour test provides an acceptable level of sensitivity in toxicity test for C. dubia.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

A Study on Mechanical Measurement of Motor and Transformer for Korean High-Speed Train

  • Han, Young-Jae;Kim, Seog-Won;Seo, Sung-Il;Kim, Young-Guk;Park, Choon-Soo;Lee, Su-Gil;Kim, Jong-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1720-1723
    • /
    • 2003
  • Recently, as the road capacity reaches a limit and environmental problems becomes serious, there exists a gradually increased need for railway vehicles that are environment-friendly, punctual, reliable and safe. Accordingly, in addition to conventional railroad vehicles, lots of vehicles are being newly developed. Korean High Speed Train has been developed for last 6 years to satisfy the need. Authors developed a measurement system for on-line test and evaluation of performances of Korean High-Speed Train. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. A new method to measure temperature was applied to the measurement system. By using the system, measurement and evaluation of the mechanical characteristics of motors and main transformers in Korean High Speed Train was conducted during test running. The measured results for the temperature characteristics of electric devices verify that the measurement system is accurate and reliable.

  • PDF

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF