• 제목/요약/키워드: High-Temperature Air Combustion

검색결과 330건 처리시간 0.031초

공기 다단 연소 기법 적용에 따른 미연탄소분 및 질소산화물 배출특성 (Characteristics of UBC and NOx Emission in Air Staging Combustion)

  • 김정우;임호;고영건;전충환
    • 대한기계학회논문집B
    • /
    • 제40권10호
    • /
    • pp.637-644
    • /
    • 2016
  • 본 연구의 목적은 석탄 입자 연소 시 공기 다단 연소 적용에 따른 UBC(Unburned Carbon) 및 질소 산화물(NOx) 배출 특성을 분석하는 것이다. 이를 위해 공기 다단 연소가 가능한 2단 하향 분류층 반응기(Two Staged Drop Tube Furnace, Two Staged DTF)를 설계 및 제작하였다. 아역청탄(Tanito)의 단일 및 다단 연소 실험을 진행하여 UBC 및 NOx 배출 특성을 분석하였다. 그 결과, 단일 연소 조건에서 온도 및 공기비가 증가함에 따라서 UBC 함량이 감소했지만 NOx의 농도는 증가했다. 특히 과농 연료 연소 영역에서 NOx 저감 반응이 일어났으며, 이때 반응 온도가 증가할수록 NOx 저감 반응이 활성화 될 뿐아니라 UBC는 감소되었다. 공기 다단 연소 실험의 경우 석탄 입자의 UBC 증가량에 비해 높은 NOx 저감 효과를 얻을 수 있었다.

터보과급 디이젤기관의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Turbocharged Diesel Engine)

  • 채재우;정성찬;백중현
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

NUMERICAL STUDY OF DROPLET VAPORIZATION AND COMBUSTION AT HIGH PRESSURE AND HIGH TEMPERATURE

  • KOO J.-Y.;KO J.-B.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.563-570
    • /
    • 2005
  • A numerical study of high pressure and temperature droplet vaporization and combustion is conducted by formulating one dimensional evaporation model and single-step chemical reaction in the mixture of hydrocarbon fuel and air. The ambient pressure ranged from atmospheric conditions to the supercritical conditions. In order to account for the real gas effect on fluid p-v-T properties in high pressure conditions, the modified Soave-Redlich-Kwong state equation is used in the evaluation of thermophysical properties. Some computational results are compared with Sato's experimental data for the validation of calculations in case of vaporization. The comparison between predictions and experiments showed quite a good agreement. Droplet surface temperature increased with increasing pressure. Ignition time increased with increasing initial droplet diameter. Temporal or spatial distribution of mass fraction, mass diffusivity, Lewis number, thermal conductivity, and specific heat were presented.

저온 디젤 연소에서 T90 온도가 배기가스에 미치는 영향 (The Effect of T90 Temperature on Exhaust Emissions in Low-temperature Diesel Combustion)

  • 한만배
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.72-77
    • /
    • 2011
  • This study is to investigate the effect of the distillation temperature in ultra low sulfur diesel fuel on exhaust emissions in the low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low temperature diesel combustion was achieved by adopting an external high EGR rate with a strategic injection control. The engine was operated at 1500 rpm 2.6 bar BMEP. The 90% distillation recovery temperature (T90) was $270^{\circ}C$ and $340^{\circ}C$ for the respective cetane number (CN) 30 and 55. It was found that there exists no distinctive discrepancy on exhaust emissions with regards to the different T90s. The high CN (CN55) fuels follow the similar trend of exhaust emissions as observed in CN30 fuels' except that high T90 fuel (CN55-T340) produced higher PM compared to low T90 fuel (CN55-T270). This may come from that high T90 plays an active role in aggravating the degree of fuel-air mixture preparedness before ignition.

산소부하 연소 시스템을 이용한 폐기물 열처리에 관한 연구 (The Study of Waste Treatment using Advanced Oxygen Enriched Combustion System)

  • 이건주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • In this study, the waste of landfill was treated using advanced enriched oxygen combustion system. The oxygen concentration of this study was 21%, 25%, 30% and 40% and the operating capacity was 200 g/min and the residence time was 10 minutes. As increased the oxygen concentration of combustion air. temperature of the incinerator was increased and the temperature was increased rapidly when the oxygen concentration was 30%. As increased the oxygen concentration, the NOx (ppm) of flue gas increase d for thermal NOx, however the CO (ppm) of flue gas decreased according to the increase of combustion efficiency . The optimum operation condition of incineration was obtained when the oxygen concentration is 30%${\sim}$40%. The unburned carbon of ash decreased from 10% to 4% when the oxygen concentration was increased from 21% to 30%, therefore the high combustion efficiency can be obtained if used the oxygen enriched combustion system.

  • PDF

MCFC 배가스용 촉매연소기 연소특성에 관한 연구 (A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors)

  • 이상민;이연화;안국영;박인욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF

1MWth 실험연소로를 이용한 석탄의 연소특성 연구 (Study on Coal Combustion Characteristics with 1MWth Test Facility)

  • 장길홍;장인갑;정석용
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

고온.저산소 농도영역중의 분무연소해석 (Computer Simulation of Liquid-Fuelled Combustor in Hot Vitiated-Air Stream)

  • 김태한;최병륜
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3187-3195
    • /
    • 1993
  • Combustion of liquid-fuelled combustion in a high-temperature vitiated-air stream was studied. The mathematical formulation comprise the application of Eulerian conservation equation to the gas phase and Lagrangian equation of droplet motion. The latter is coupled with a droplet-tracking technique (PSI-CELL Model) which regard the droplet phase as a source of mass, momentum, and energy to the gaseous phase. Reaction rate is determined by taking into account the Arrhenius reaction rate based on a single-step reaction mechanism. The calculated profiles show somewhat uncertainess at the upstream, but bases data for designing the combustor followed by 2-phase flow were obtained.

희박 예혼합 연소를 이용한 마이크로터빈의 저공해 연소기 개발에 관한 연구 (The Study on Development of Low NOx Combustor with Lean Burn Characteristics for Microturbine)

  • 윤정중;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.63-72
    • /
    • 2003
  • In order to reduce NOx emissions in the 20kW class microturbine under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and high pressure. Theair from a compressor with the pressure of 2.5bar, 3.0bar, 3.5bar was supplied to the combustor with the temperature 560K through the air preheat-treatment. The sampling exhaust gas was measured at the immediate exit of the combustor. For the effect of temperature on NO and CO emissions, though NOx were increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx were increased and CO was decreased also. NOx were decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratio of 0.10 to 0.16 in the lean region. NOx were increased with increasing equivalent ratio, but CO was decreased as an influence of flame temperature. CFD work with an appropriate combustion model predicated a complicated swirling flow pattern in the combustor, and also produced a numerical value of NOx and CO emissions which was to be compared with the experimental one. As the results of this study, NOx are expected to be reduced to less than 42ppm at 15% O2 when operated at the design condition of the 20kW class microturbine.

  • PDF

발전보일러의 최적연소조정에 대한 실험적 연구 (The Study of Optimized Combustion Tuning for Fossil Power Plant)

  • 정재진;송정일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF