• Title/Summary/Keyword: High-Temperature Air Combustion

Search Result 330, Processing Time 0.031 seconds

A Study on the Transition of Hydrogen-Air and LPG-Air Explosion to Fire (수소와 액화석유 가스의 공기혼합기의 폭발 후 화재로 전이 연구)

  • Oh Kyu-Hyung;Lee Sung-Eun;Rhie Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.150-154
    • /
    • 2004
  • Gas explosion characteristics of hydrogen and liquefied petroleum gas(LPG) were measured in 6L cylindrical vessel, and experiment for explosion to fire transition phenomena of the gases were carried out using the 270L vessel. Explosion characteristics were measured using the stain type pressure transducer and explosion to fire transition phenomena was analyzed with the hish-speed camera. Base on the experiment, it was found that explosion pressure was most high slightly above the stoichiometric concentration, and explosion pressure rise rate and flame propagation velocity were proportional to the combustion velocity. And we find that those kind of explosion characteristics affect the explosion-to-fire transition, in addition, explosion flame temperature, flame residence time, are important parameters in explosion-to-fire transition.

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

Numerical Study on the Process of Supersonic Flow Formation in a Direct-Connect Supersonic Combustor (Direct-Connect 초음속 연소기 내 초음속 유동 형성과정에 대한 수치해석)

  • Jeong, Seong-Min;Han, Hyunh-Seok;Sung, Bu-Kyeng;Lee, Eun-Sung;Choi, Jeong-Yoel
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.889-902
    • /
    • 2020
  • In this study, a numerical analysis was performed to confirm the formation of supersonic flow and the stabilization time satisfying the design condition in a Direct-connect supersonic combustor. The process was examined in which the high-pressure gas of vitiation air heater propagates downstream to the supersonic combustor and forms a supersonic flow field. It was confirmed through the analysis of pressure and temperature that the supersonic flow field satisfies the design points of Mach number 2.0 and 1,000 K, and requires a minimum of 4.0 ms for stabilization. These results indicate that the time required for the supersonic flow field stabilization should be taken into account when testing for the supersonic combustion experiment.

Effects of Additives and Ignition Support Material on HTPB Fuel Grains for Solid Fuel Ramjet (고체연료 램젯용 HTPB 연료그레인에 첨가제와 점화보조제가 미치는 영향)

  • Jung, Woosuk;Baek, Seungkwan;Jung, YeonSoo;Kwon, Taesoo;Park, Juhyun;Kim, Incheol;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.957-967
    • /
    • 2017
  • Firing test of the fuel grain for solid fuel ramjet with additives and ignition support material was conducted. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Boron particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. An oxidant gas having a controlled temperature, pressure and oxygen composition close to the air condition in the ramjet combustor was supplied using the Ethanol blended $H_2O_2$ gas generator. Gas was set to flow at a mass flow rate of 150 g/s and mass flux of $200kg/m^2s$ in the grain port. Through the test, ignition support operated well and ignition delay of 0.5. During the test, stable chamber pressure with 8 bar and high combustion efficiency of 0.86 was confirmed.

  • PDF

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

A Numerical Study for Effective Operation of MSW Incinerator for Waste of High Heating Value by the Addition of Moisture Air (함습공기를 이용한 고발열량 도시폐기물 소각로의 효율적 운전을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Shin, Na-Ra;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • Stoker type incinerator is one of the most popular one used as municipal solid waste (MSW) incineration because, in general, it is quite suitable for large capacity and need no preprocessing facility. Nowadays, however, since the combustible portion of incoming MSW increases together with the decrease of the moisture content due to prohibition of directly burying food waste in landfill, the heating value of waste is remarkably increasing in comparison with the early stage of incinerator installation. Consequently, the increased heating value in incinerator operation causes a number of serious problems such as reduction of waste amount to be burned due to the boiler heat capacity together with the significant NO generation in high temperature environment. Therefore, in this study, a series of numerical simulation have been made as parameters of waste amount and the fraction of moisture in air stream in order to investigate optimal operating condition for the resolution of the problems associated with the high heating value of waste mentioned above. In specific, a detailed turbulent reaction flow field calculation with NO model was made for the full scale incinerator of D city. To this end, the injection method of moisturized air as oxidizer was intensively reviewed by the addition of moisture water amount from 10% and 20%. The calculation result, in general, showed that the reduction of maximum flame temperature appears consistently due to the combined effects of the increased specific heat of combustion air and vaporization heat by the addition of water moisture. As a consequence, the generation of NOx concentration was substantially reduced. Further, for the case of 20% moisture amount stream, the afterburner region is quite appropriate in temperature range for the operation of SNCR. This suggests the SNCR facility can be considered for reoperation. which is not in service at all due to the increased heating value of MSW.

Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수슬러지 및 우드펠렛 혼소에 관한 연소 특성 분석 및 비교)

  • Lee, Youngjae;Kim, Jongmin;Kim, Donghee;Lee, Yongwoon
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • The bubbling fluidized bed (BFB) reactor with a diameter of 0.1 m and a height of 1.2 m was used for experimental study of co-firing and emission characteristics fueled by sewage sludge (SS) and wood pellet (WP). The facility consists of a fluidized bed reactor, feeding system, cyclone, condenser and gas analyzer, The mean particle diameter and minimum fluidization velocity are $460{\mu}m$ and $0.21ms^{-1}$ respectively. SS produced from Korea and WP from Canada were examined. The various mixing ratios of WP were 20, 50, and 80% based on HHV. The equivalence ratio of 1.65, reactor temperature of $800^{\circ}C$, air flow rate of $100Lmin^{-1}$, and fluidization number of 4 were fixed in the BFB experiment. In TGA, the range of combustion temperature of SS was wider than that of WP. It represents that the combustibility of WP is higher than that of SS. The BFB reactor temperature was maintained between 800 and $900^{\circ}C$. CO emission of SS was high because of lower combustibility. $NO_X$ and $SO_X$ formation of SS were higher than that of WP since high nitrogen and sulfur contents of SS. CO, $NO_X$, and $SO_X$ formation were suppressed as the mixing ratio of WP was increased. The slagging and fouling tendencies show high in all test conditions.

Adsorption characteristics of the sericite and diatomite for ammonia gas (견운모와 규조토에 대한 암모니아 기체의 흡착특성)

  • Lee, Suseung;Kim, Jinsoo;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.175-181
    • /
    • 2006
  • The feasibility of the use of porous fossil diatoms for indoor air pollution control was investigated via the characterization of physical and chemical properties. The fossil diatoms were observed by SEM(Scanning Electron Microscope). Diatomite had well-distributed pores below 5 nm and relatively large surface area compare to sericite. However, no porosity in sericite was found. Results showed that diatomite had better performance than sericite in respect to porosity and large surface area. But diatomite which is thermally treated at $950^{\circ}C$ has no porosity and low surface area because of combustion of fossil diatoms or calcination of inorganic oxide at high temperature, and has poor adsorption capability of ammonia gas. In conclusion, porous diatomite has relatively high performance to adsorb noxious chemical compounds, such as ammonia gas and VOCs.

  • PDF

A Study of Nitrous Oxide Decomposition using Calcium Oxide (Calcium Oxide를 이용한 N2O 분해에 관한 CO2의 영향 연구)

  • Paek, Jin-Young;Park, Yeong-Sung;Shun, Dowon;Bae, Dal-Hee
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.746-751
    • /
    • 2002
  • Fluidized bed combustion is a coal combustion technology that can reduce both SOx and NOx emission; SOx is removed by limestone that is fed into the combustion chamber and the NOx is reduced by low temperature combustion in a fluidized bed combustor and air stepping, but $N_2O$ generation is quite high. $N_2O$ is not only a greenhouse gas but also an agent of ozone destruction in the stratosphere. The calcium oxide(CaO) is known to be a catalyst of $N_2O$ decomposition. This study of $N_2O$ decomposition reaction in fixed bed reactor packed over CaO bed has been conducted. Effects of parameters such as concentration of inlet $N_2O$ gas, reaction temperature, CaO bed height and effect of $CO_2$, NO, $O_2$ gas on the decomposition reaction have been investigated. As a result of the experiment, it has been shown that $N_2O$ decomposition reaction increased with the increasing fixed bed temperature. While conversion of the reaction was decreased with increasing $CO_2$ concentration. Also, under the present of NO, the conversion of $N_2O$ decomposition is decreased. From the result of kinetic study gained the heterogeneous reaction rate on $N_2O$ decomposition. In the case of $N_2O$ decomposition over CaO, heterogeneous reaction rate is. $\frac{d[N_2O]}{dt}=\frac{3.86{\times}10^9{\exp}(-15841/R)K_{N_2O}[N_2O]}{(1+K_{N_2O}[N_2O]+K_{CO_2}[CO_2])}$. In this study, it is found that the calcium oxide is a good catalyst of $N_2O$ decomposition.

Semi-continuous Measurements of PM2.5 OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes (준실시간 연속관측을 통한 제주 고산 PM2.5 OC와 EC의 계절별 사례별 특성)

  • Han, Jihyun;Bahng, Byungjo;Lee, Meehye;Yoon, Soon-Chang;Kim, Sang-Woo;Chang, Limseok;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.237-250
    • /
    • 2013
  • At Gosan ABC superstation in Jeju Island, we measured organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ from October 2009 to June 2010 using a Sunset Laboratory Model-4 Semi-Continuous OC/EC Field Analyzer. It employs TOT (Thermal-Optical-Transmittance) method with NIOSH 5040 protocol and enables to continuously monitor OC and EC concentrations with 1-hour time resolution. The mean values of OC and EC for the entire period of measurements were $2.1{\pm}1.4{\mu}g/m^3$ and $0.7{\pm}0.6{\mu}g/m^3$, respectively. The OC/EC ratio was 3 and EC accounted $25{\pm}2.1%$ of total carbon (TC, TC=OC+EC). Although OC and EC showed similar trend in seasonal variation, the ratio of OC to EC was the highest in early summer when temperature was the highest and the air was affected by biomass burning in the southern part of China. In winter, the high OC and EC concentrations were likely influenced by increased coal combustion from residential heating. The high OC and EC concentrations were observed during events such as haze, dust, and the combination of the two. During the haze events, OC and EC were enhanced with increase in $PM_{10}$, $PM_{2.5}$, $SO_2$, and $NO_2$ with broad maxima. When dust occurred, both OC and EC started decreasing after reaching their maxima a couple of hours before $PM_{10}$ maximum. The peak separation of carbonaceous species and aerosol masses with time was more noticeable when haze event was followed by dust plume. These results confirm that OC and EC are key components of haze occurring in the study region.