• Title/Summary/Keyword: High-Strength bolts

Search Result 142, Processing Time 0.023 seconds

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Inelastic Analyses and Simplified Equations for Improved T-stub Element Used at Semi-Rigid Connections (반강접 접합부의 요소인 개량 T-stub의 비탄성 해석과 약산식)

  • Cho, Jae Chul;Kim, Won Ki;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.271-279
    • /
    • 1999
  • Recently, studies on semi-rigid beam-to-column connections have been done to develop a T-stub element with separators between column face and T-stub flange. In this paper, inelastic analyses for the improved T-stub element are performed, and their results are compared with existing experimental results. The inelastic analyses using gap elements between column face and the separator, and initial stresses at the high-tension bolts result in good agreement with experimental results. Simplified design methods estimating the initial stiffness and the strength of the semi-rigid connection for compression force are proposed.

  • PDF

Analysis on Characteristics of Drawing Plastic Deformation for Rectangular Monel Material with Special Alloy and Rollers (특수합금 사각봉 모넬 소재의 인발 소성변형 및 롤러 특성 해석)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.961-968
    • /
    • 2022
  • Hydrogen embrittlement leads to the damages in bolts, nut, especially, high pressure valves, in the semiconductor facilities, hydrogen vehicles, hydrogen stations and so on. Monel material has higher strength than SUS material. Therefore, even though Monel material with special alloy is usually used to prevent the hydrogen embrittlement, it needs powerful drawing system to manufacture the rectangular or hexagonal bar using circular bar. The purpose of this study is to investigate the characteristics of plastic deformation of Monel material and 2 rollers of rolling unit in plastic limit through numerical analysis. As the results, it was predicted that, based on mean stress, as the rolling step was increased, the rolling force of rolling unit was decreased. In addition, the heat treatment for Monel material was needed because of residual stress due to plastic deformation. As for rollers, the roller was safe about 1.86 times compared with that of ultimate strength. In this study, as the roller 2 showed larger stress than roller 1, thus, roller 2 should be designed carefully to guarantee the safety. Further it was confirmed that the reaction force of roller could be helpful in bearing design.

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

Design Formula for the Flexural Strength of a Double Split Tee Connection (상·하부 스플릿 T 접합부의 휨강도 설계식)

  • Yang, Jae-Gue;Kim, Joo-Wo;Kim, Yu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.511-520
    • /
    • 2012
  • The double split Tee connection, a type of full strength-partially restrained connection, has adequate flexural strength according to the changes in the thickness of the T-stub flange and the gauge distance of the high-strength bolts. Moreover, the double split Tee connection is designed and constructed with seismic connections that have enough ductility capacity applicable to ordinary moment frame and special moment frame by grade of steel, size of beam and column and geometric connection shape. However, such a domestic research and a proposal of a suitable design formula about the double split Tee connection are insufficient. Thus, many experimental and analytical studies are in need for the domestic application of the double split Tee connection. Therefore, this study aimed to examine and suggest feasibility of a design formula of the double split Tee connection of FEMA.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

A Study of Static Behavior of FRP Bridge Deck Concerning Connection Condition (FRP바닥판의 연결조건에 따른 정적거동 분석)

  • Yong, Hwan Sun;Hwang, Yoon Koog;Kyung, Kab Su;Park, Yong Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.597-604
    • /
    • 2006
  • Fiber Reinforced Polymer (FRP) is a relatively new material in the bridge construction. With high strength to weight ratios, excellent durability, and low life-cycle costs of FRP, FRP bridge decks can offer a low dead load, reduced maintenance, and long service life. Due to the lightweight of FRP, if existing concrete decks can be replaced with the FRP decks, the load carrying capacity of superstructure can be increased without strengthening of girders. In this study, we have conducted an experiment on 7 cases of connection conditions with steel girder by using bolts considering a rational and economical method of connection and compared with the results of FEM analysis. From the experimental result, if the bolts are strong enough to resist shear force between the FRP bridge deck and the steel girder, it will be structurally secure to use the zigzag method.

The Joining Quality of High Strength Bolt, Nut and Washer Set (A490) in the Extreme Conditions (극한 상태에서 A490 고장력 볼트 세트의 체결 품질 연구)

  • Suk, Han-Gil;Cho, In-Seup;Hong, Hyeon-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • This test focuses on the correlation between the lubrication, ductility and strength through the change of nut lubricant which decides joining angle for A490 bolt sets required in the AASHTO (American Association of State Highway & Transportation Officials). Because the lubrication of high tension bolt, nut, washer sets becomes an important factor to ductility and joining load, the quality improvement is required for improving reliability and securing enough lubrication of maker and user. This study examines the quality characteristics required in the specification through tests because only this standard specifies joining quality in the extreme conditions (as much about two times of the joining angle on site as normal condition). Moreover, this study is limited to the test on joining axial force required in the AASHTO for the three nut lubrication conditions of A490 bolt set. It is concluded that the nuts should be coated or waxed enough for the improvement of the joining axial force and ductility of bolts required in the standards. It is shown that in the case of plain high tension bolt sets, a rust preventing lubricative oil shall be applied and the torque coefficient value for A490 bolt sets should be maintained below 0.175.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load (피로하중에 의한 홀 노치 탄소섬유강화 복합재의 잔류강도변화 평가)

  • Kim, Sang-Young;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1411-1417
    • /
    • 2010
  • CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.