• Title/Summary/Keyword: High-Speed Spectrum Measurement

Search Result 39, Processing Time 0.023 seconds

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

Next-Generation Intelligent Radio Monitoring System (차세대 지능형 전파감시 시스템)

  • Yim, Hyun-Seok;Moon, Jin-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.846-851
    • /
    • 2008
  • With rapid development of communication industry, the kinds of communication service vary. According to the increasing use of radio waves, the intelligent and effective radio monitoring system needs to be developed, which is replaced for previous radio monitoring system. Next-generation intelligent radio monitoring system based on ITU-R, Rule of wireless facilities, and Radio Waves Act is used, and which can accurately and effectively function as effective radio monitoring system through spectrum analysis of channel power, frequency deviation, offset, and an occupied frequency bandwidth(99% or x-dB), about the analog and digital signal in On-Air of V/UHF bandwidth. Main function of the system has an radio quality measurement, unwanted electromagnetic signals (spurious, harmonic) measurement, high-speed spectrum measurement, frequency usage efficiency investigation, illegal radio exploration, working monitoring, In this paper, we proposes radio quality measurement, high-speed spectrum measurement of next-generation intelligent radio monitoring system.

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.

Spectral Estimation of the Pass-by Noise of an Acoustic Source (등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구)

  • Lim Byoung-Duk;Kim Deok-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1597-1604
    • /
    • 2005
  • The identification of a moving noise source is important in reducing the source power of the transport systems such as airplanes or high speed trains. However, the direct measurement using a microphone running with noise source is usually difficult due to wind noise, white the source motion distorts the frequency characteristics of the pass-by sound measured at a fixed point. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for an acoustic source moving at a constant velocity. Spectrum of the sound signal measured at a fixed point has an integral relationship with the source spectrum. Nevertheless direct conversion of the measured spectrum to the source spectrum is ill-posed due to the singularity of the integral kernel. Alternatively a differential equation approach is proposed, where the source characteristics can be recovered by solving a differential equation relating the source signal to the distorted measurement in time domain. The parameters such as the source speed and the time origin, required beforehand, are also determined only from the frequency-phase relationship using an auxiliary measurement. With the help of the regularization method, the source signal is successfully recovered. The effects of the parameter errors to the estimated frequency characteristics of the source are investigated through numerical simulations.

Measurement of Milling Ratio using the Visible and the Near-Infrared Rays Spectrum (가시광선 및 근적외선 스펙트럼을 이용한 도정비율 측정)

  • 이용국;이재현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 1999
  • This research was carried out to investigate the possibility of real time rice milling ratio measurement using the spectral reflection characteristics. In this study, various methods were compared such as \circled1 using the whiteness meter, \circled2 using the colorimeter, \circled3 using the Visible and the NIR reflection spectrum. The samples were milled in the domain of 84~96% by 0.5% interval classified by milling ratio. The NMG treatment method required about 20 minutes to determine the milled ratio and r2 was 0.0028 to 0.7959 that was very low. In case of whiteness meter, r2 was high but speed of measurement was 5 minutes that was very low. Measurement with the colorimeter required about 5 minutes and r2 was 0.60 to 0.85 that was low. The reflection spectrum were measured in the range of 400~2,500nm with 2nm interval and the MLR model with six-wavelength obtained from first derivative of spectra gave the best results(r2 = 0.967, SEP = 0.729%)

  • PDF

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

An Experimental Study on Micro-vibration Measurement Methods of a Reaction Wheel (반작용휠의 미소진동 측정법에 관한 실험적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.828-833
    • /
    • 2011
  • A reaction wheel assembly(RWA) is the largest disturbance source that can induce high frequency micro-vibration on an optical payload of satellites. To ensure a tight pointing-stability budget of satellites, the RWA disturbance effect on spacecraft should be accurately analyzed and evaluated for whole design phases. For this purpose, the micro-vibration disturbance of RWA should be precisely measured. In the present study, two measurement methods on RWA micro-vibration disturbances are compared and investigated. One is a free run-down speed test and the other is a constant speed test. The micro-vibration data measured by the two methods are analyzed in terms of spectrum characteristics, static and dynamic imbalance values, and root sum square(RSS) values. The analysis results show that both methods can measure very similar results in time and frequency domains and that the free run-down speed method is more adequate in respects to wheel friction modeling, noise rejection of imbalance and RSS peak evaluation.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.