• Title/Summary/Keyword: High-Speed Railway Vehicle

Search Result 409, Processing Time 0.035 seconds

Traction System Characteristics of Railway Vehicle

  • Han, Young-Jae;Kim, Ki-Hwan;Seo, Sung-Il;Park, Chun-Su;Han, Seong-Ho;Kim, Young-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1351-1354
    • /
    • 2005
  • Recently, as the feasibility study shows that trans-Korea railway and trans-continental railway are advantageous, interest in high speed railway system is increasing. Because railway vehicle is environment-friendly and safe compared with airplane and ship, its market-sharing increases gradually. Korean High Speed Train has been developed by KRRI for last 7 years to satisfy the need. Korean High Speed Train (350km/h), composed of 2 power cars, 2 motorized car and 3 trailer cars, has been developed and is under trial test. To verify the design requirements for the functions and traction performances of the train, KRRI (Korea Railroad Research Institute) decided to evaluate traction performances of the train during trial test. For this purpose, torque, velocity, voltage and current must be measured. KRRI has developed a measurement system that can measure vast and various signals effectively. In this paper, we introduce traction performances of Korean High Speed Train. The traction measurement items are focused on the verification of motor block performances. Motor block consists of 2 motors. By this test, we verified traction performances of Korean High Speed Train

  • PDF

Comparison Study of Sound Transmission Loss in High Speed Train

  • Kim, Tae-Min;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Many studies for improving the railway vehicle's performance and comfort such as speed, weight and noise are currently in progress. Improving the structural characteristics of the vehicle for greater noise insulation is considered important for reducing disturbance due to noise, but measuring transmission loss entails large costs. This study explores an alternative method for estimating and measuring the railway vehicle's transmission loss that involves on applying the numerical analysis coupled with scaled reverberation chamber measurement. The transmission loss measurement using scaled reverberation chamber was performed after the compensation value was found through 1mm thickness(1t) specimen. For numerical analysis, a commercially available acoustics solver VA ONE was used. The proposed method is found to lead to transmission loss measurement comparable to the measurements based on large-scale reverberation chamber. Thus, it can be argued that a reliable method has been developed for measuring railway vehicle's transmission loss.

Dynamic Analysis of Railway Vehicle Using Mathematical Modeling of High-Speed EMU (분산형 고속전철의 34자유도 동역학적 모델링을 통한 철도차량의 동적 특성 해석)

  • Lee, Rae-Min;Lee, Pil-Ho;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1426-1434
    • /
    • 2008
  • This paper addresses the numerical study on the dynamics of the High-speed EMU to enhance the ride quality. The 17 and 34 degrees-of-freedom (DOF) dynamic models for a single railway vehicle are proposed, and its vibrational characteristics according to the nonuniform rail profile are analyzed via Matlab. The validity of the proposed 34-DOF model are verified by comparing its dynamic characteristics and those from ADAMS/Rail. In addition, the critical dynamic parameters are identified by the parametric analysis, and rough design variables to reduce the vibration level of the railway vehicle are proposed. Finally, the frequency analysis - FFT - are conducted to extract the resonant frequencies, which have a significant influence on the determination of the critical speed of the railway vehicle. It is demonstrated that the results from the Matlab-based numerical analysis of the 34-DOF dynamic model are similar to those from ADAMS/Rail.

  • PDF

A Study on the displacement characteristics of suspension elements for KTX (고속철도차량 현가계요소 변위특성 연구)

  • Hur H.M.;Kwon S.T.;Lee C.W.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.378-382
    • /
    • 2005
  • The opening of high speed railway upgraded our land transportation speed limit, causing lots of changes including living and culture and also paving the way for stepping up the railway technology. However, it is also true that we had a limit to adopt the existing railway system structured for 150km/h to the new structure requiring a higher speed of approximate 300km/h due to technological, based on the time and experience. More importantly, heading toward a step of operating such a high speed railway system, it has been practically and quickly proposed that the railway needs high speed railway engineering, maintenance technology of parts of the vehicles to have a stable maintenance foundation and localization of major parts. Therefore, this study was intended to research the actual displacement characteristics in runningg on an actual track for the purpose of developing the protective and maintenance technology of springs and dampers, which are core parts among suspension elements of a high speed railway vehicle. For this, it was researched the actual vehicle test and its interpretation centered on primary spring, which is used for the suspension system of a bogie, body-body dampers and body-bogie yaw damper. Also, to analyze the displacement characteristics of suspension system in the actual conditions of high speed railway vehicles, a vehicle‘s dynamic characteristics was analyzed and interpreted. At the same time, a tester for measuring the actual displacement of such suspension elements was designed and attached to actual vehicles, to measure the displacements that occur in running it on the Seoul-Busan line, one of major lines serviced by KTX. The displacement data gained from the test with actual vehicles was analyzed for its displacement distribution depending on the service sections and frequency, with which the valuable data necessary for any potential breakdown or maintenance in the future could be obtained.

  • PDF

Vibration Analysis of High-Speed EMU Car Body Using Equivalent Stiffness and Shell Element (등가강성과 Shell 요소를 이용한 분산형 고속전철의 차체 진동 해석)

  • Baek, Seung-Guk;Shin, Bum-Sik;Choi, Jin-Hwan;Lee, Sang-Won;Choi, Yeon-Sun;Koo, Ja-Choon
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.217-222
    • /
    • 2009
  • High-speed EMU under development vibrates more than a articulated high-speed train since power units are attached on each vehicle and railway vehicle. In this study, anisotropic equivalent stiffness of a aluminum extrusion plate were calculated to know and predict vibration characteristic of High-speed EMU under development. Eigen frequencies and modal shape of high speed train vehicle were calculated. And vibration generated was predicted at each position of vehicle when vehicle was operating.

  • PDF

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Lateral Vibration Analysis of a Small Scale Railway Vehicle Model (축소형 차량의 횡진동 해석)

  • Lee Seung-Il;Son Gun-Ho;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

Crash Analysis of Railway Vehicle Structure Using Scale Model (축소모형을 이용한 철도차량 충돌 해석 기법 연구)

  • 김범진;허승진
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.54-59
    • /
    • 2002
  • In general, the aluminum extrusions are used to the light construction of the high speed rail vehicle structures. However, the research works ok the crashworthy design of the high speed rail vehicle structures are not published sufficiently because the crash test of high speed rail vehicle structures costs high and is complicated. So, a method that can predict crash characteristics of a large size structure like a high speed tail vehicle should be suggested. In this study, the scale model studies are performed to predict the impact energy absorption characteristics of full scale model. In the first place, we verified the theory of scale law using FE-simulation from the crashworthiness point of view. Secondly, we performed the crush test using scale model, made of aluminum sub structure. As a result, we could predict the crash characteristics using scale model by 10∼20% error.

  • PDF

Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model

  • Song, Myung-Kwan;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.505-532
    • /
    • 2002
  • In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional finite element model is performed. Since railroads are constructed mostly as double tracks, there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge. Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in the other case, two trains move respectively on their tracks in the opposite direction. From the analysis results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for practical application can be also verified.

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.