• Title/Summary/Keyword: High-Speed Propulsion

Search Result 403, Processing Time 0.024 seconds

Novel Ramjet Propulsion System using Liquid Bipropellant Rocket for Launch Stage

  • Park, Geun-Hong;Kwon, Se-Jin;Lim, Ha-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.506-510
    • /
    • 2008
  • Ramjets are capable of much higher specific impulse than liquid rocket engines for high speed flight in the atmosphere. Ramjets, however, cannot generate thrust at low flight speed. Therefore, an additional propulsion device to accelerate the ramjet vehicle to a supersonic speed is required. In this study, we propose a novel ramjet propulsion system with a $H_2O_2$/Kerosene rocket as the accelerator for initial stage. In order to test the feasibility of this concept, consecutive reactors was built; one for the decomposition of $H_2O_2$ and the other for kerosene combustion. Decomposed $H_2O_2$ jet was injected to combustor through converging nozzle from gas generator and over this hot oxygen jet, kerosene was injected by spay injector. Through the various test cases, hypergolic ignition test was carried out and steady combustion was achieved.

  • PDF

Study on Design of the Cooling System Used for the Propulsion System of the High-Speed EMU (동력분산형 고속전철의 추진시스템용 냉각장치의 설계 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Ki, Jae-Hyung;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1221-1226
    • /
    • 2008
  • Present, the cooling method of using a phase-change heat transfer such as immersed type, heat pipe etc is applied in cooling of high-capacity power semiconductors of the main power system for the high speed train with the concentrated traction. In order to apply these phase-change cooling system to the high speed EMU to be developed, needed are technological researches of consideration of installing space, air passage, light weight material and miniaturization. Although this research establishes design specifications through theoretical analysis and computational analysis from the basic design process of the cooling system of the propulsion system for the high-speed EMU, when details design is completed, present improvement subject and optimum design before manufacturing the prototype of the cooling system on the basis of analysis results. And then, carried out will be the performance tests through prototype manufacture and reliability estimation by components of cooling system.

  • PDF

A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle (초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구)

  • Park, Jungwoo;Kim, IkSoo;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.953-956
    • /
    • 2017
  • This paper introduces general applications of vehicle's dynamic pressure information which is estimated during the flight. And a method to estimate the dynamic pressure for a high speed vehicle is suggested to sustain reliability of the flight under a high estimation accuracy of the information. The presented method is straightforward with simple relations of the compressible flow but is a still merited idea employed for the high speed vehicle control scheme with great accuracy.

  • PDF

Magnetohydrodynamic Ship Propulsion with Superconduction Magnets (초전도 자석을 이용한 전자유체(MHD) 추진)

  • 공영경;최태인;김윤식;노창주
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.35-38
    • /
    • 1992
  • The feasibility of magnetohydrodynamic (MHD) Ship propulsion using superconduction magnets is reviewed in light of recent advances in high-temperature superconducting. The propulsion using a screw propeller in the noise reduction has it's own limitation. The epochal noiseless MHD propulsion method which does not have this disadvantage is studying nowadays. The subject of a marine MHD as propulsion has been examined before and was found to be interesting because of relatively low magnetic flux densities. It is demonstrated that the MHD propulsion is technically interesting with high magnetic flux density. The development of large-scale magnets using the high-temperature superconductors now under development could make it practical to construct submersibles for high-speed and silent operation.

  • PDF

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.

Development of Propulsion System for Korean High Speed Railway (한국형 고속전철용 추진제어장치 개발)

  • Lee K.J.;Cho S.J.;Woo M.H.;Jang S.Y.;Kim D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.872-875
    • /
    • 2003
  • This paper introduces the propulsion system for Korean High Speed Railway(HSR). The developed propulsion system consists of PWM AC/DC converter and inverter. Compared with TGV-K, converters can improve input harmonics characteristics by the interlaced PW switching methods. And several merits such as unity power factor and simple regenerative operations can be also made. As a main power component, IGCT stack with suitable structure for high speed train and environmentally friendly cooling heat pipe is designed. In this paper, overall configuration of controller and control scheme is briefly described. Finally running tests are made to verify the developed propulsion system. The presented test results shows fast torque response, balanced converter current sharing, and appropriate running sequence.

  • PDF

Status of Advanced Tecnhologies and Domestic Researches for Development of Korean Next Generation Maglev (한국형 차세대 자기부상열차 개발을 위한 선진기술분석 및 국내연구현황)

  • Cho, Han-Wook;Bang, Je-Sung;Han, Hyung-Seok;Sung, Ho-Kyung;Kim, Dong-Sung;Kim, Byung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1767-1776
    • /
    • 2008
  • This paper presents the status of advanced technologies and domestic researches for development of Korean next generation maglev. Generally, two specific configurations such as the EMS (Electromagnetic Suspension) with LSM (Linear Synchronous Motor) and EDS (Electrodynamic Suspension) with LSM can be employed as a propulsion and levitation device of high-speed maglev. Worldwide high-speed maglev developments refer to projects such as the German Transrapid with EMS, the Japanese MLX with EDS, and the U.S. Inductrack with PM (Permanent Magnet) EDS maglev system. In this paper, the propulsion and levitation systems of these world wide high-speed maglev have been reviewed and analysed.

AC/DC Converter Design of The Korean Type Multi-Propulsion System (한국형 다중추진시스템의 주전력변환기 설계)

  • Jho Jeong-Min;Jung Byung-Su;Cho Heung-Jae;Kim Su-Yong;Sung Ho-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • Korean multi-propulsion system consists of a synchronous alternator driven by a gas turbine driving synchronous alternator coupled to a rectifier - DC link - DC/DC converter and traction system based on modification of the G7 high-speed train. The simulation modules include turbine engine system, alternator, rectifier, DC/DC converter and power management module. Simulation for the multi-propulsion system such as a modular is presented in order to confirm the system stability for loads with uncertain input impedances and control loop speeds. This paper deals with various simulation modules with a specific control loop to help the development of the real lame-scaled system.

Steady State Operational Characteristic Analysis of the Propulsion System for the Canard Rotor Wing UAV in three different Flight Modes (비행 모드에 따른 CRW UAV 추진시스템의 정상상태 운전특성 해석)

  • 공창덕;강명철;기자영;박종하;양수석;전용민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed.

  • PDF

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.