• Title/Summary/Keyword: High-Resolution satellite

Search Result 1,138, Processing Time 0.029 seconds

Inter-comparison of three land surface emissivity data sets (MODIS, CIMSS, KNU) in the Asian-Oceanian regions (아시아-오세아니아 지역에서의 세 지표면 방출률 자료 (MODIS, CIMSS, KNU) 상호비교)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.219-233
    • /
    • 2013
  • In this study, spatio-temporal variations of Land Surface Emissivity (LSE) of the three LSE data sets in the Asian-Oceanian regions were addressed. The MODerate Resolution Imaging Spectroradiometer (MODIS) LSE, Cooperative Institute for Meteorological Satellite Studies (CIMSS) LSE, and Kongju National Univ. (KNU) LSE data sets were used. The three data sets showed very similar emissivity in the Tibetan Plateau, desert in the Middle East and Australia, and low latitude regions irrespective of season. The emissivity of $12{\mu}m$ was systematically greater than that of $11{\mu}m$, in particular, in the Tibetan Plateau, desert over Middle East and Australia. In general, they showed a weak seasonal variation in the low latitude regions although the emissivity was different among them. However, the three data sets showed quite different spatial and temporal variations in the other regions of Asian-Oceanian regions. The KNU LSE showed a systematic seasonal variation with a high emissivity during summer and low emissivity during winter but the other two LSE data sets showed irregular seasonal variations without regard to the regions. And the annual mean correlations of $11{\mu}m$ and $12{\mu}m$ between KNU LSE and MODIS LSE (KNU LSE and CIMSS LSE; MODIS LSE and CIMSS LSE) were 0.423 and 0.399 (0.330, 0.101; 0.541, 0.154), respectively. The relatively low correlations and strong inter-month variations, in particular, in $12{\mu}m$, indicated that consistency in spatial variation was very low. The comparison results showed that caution should be given before operational use of the LSE data sets in these regions.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

A Study on the Determination of Exterior Orientation of SPOT Imagery (SPOT 위성영상(衛星映像)의 외부표정요소(外部標定要素) 결정(決定)에 관한 연구(硏究))

  • Yeu, Bock Mo;Cho, Gi Sung;Kwon, Hyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.77-85
    • /
    • 1990
  • The application of remote sensing in small scale mapping has recently been widened to various fields such as information analysis of landuse, environmental conservation and natural resources. SPOT imagery, in particular, offers data which can be processed for 3-dimensional point determination. This is made possible by its high resolution, appropriate swatch width/altitude ratio and stereo imaging capabilities. This study aims to develop a suitable polymonial and an algorithm in the determination of exterior orientation which is essential in the 3-dimensional point determination of SPOT imgery. An algorithm is presented in this study to determine the exterior orientation of a preprocessed level lB film of the satellite image. It was found that a polynominal of 15 parameters is the best fit polynominal for exterior orientation determination, where 1st order line function is used for positon ($X_o$, $Y_o$, $Z_o$) and 2nd order line function is used for orientation (${\kappa}_o$, ${\phi}_o$, ${\omega}_o$).

  • PDF

A Base Study of Intergrated Map for Integrated Coastal Zone Management (연안통합관리를 위한 통합수치도 개발에 관한 연구)

  • Yi, Gi-Chul;Suh, Sang-Hyun;Jeong, Hui-Gyun;Park, Chang-Ho;Yeo, Ki-Tae
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.4
    • /
    • pp.425-436
    • /
    • 2003
  • Integrated approach is presented by developing the technology and the ways of the practical use of the integrated digital map of and Electronical Navigational Chart (ENC) and Digital Terrain Map (DTM) for the effective and scientific based conservation, development and management of coastal area in this study. At first as preliminary studies to make eventual integrated maps, the necessity of the integrated map is described with the concept of coastal areas. Then, the characteristics of digital maps developed by Korean Geography Institute and National Marine Investigation Institute are carefully analyzed and integrated to a digital map as a test for edge matching in coastal line. Developed test coastal map was overlayed with a high-resolution satellite image (KVR-1000). The ground survey using Global Positioning System was conducted for the analysis of edge matching along the coastal line. Results from the edge matching analysis of coastal lines showed about 14 meters mean difference in artificial terrain and 4 meters mean difference in natural terrain. The problems, causes and solutions for the edge-matched differences are described. Furthermore, the value of utilization, the future use and various fields of application produced by the integrated digital map database are suggested as a basis for ICZM implementation in South Korea.

  • PDF

Enhanced Recovery of Gravity Fields from Dense Altimeter Data

  • Kim, Jeong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 1996
  • This paper presents a procedure to recover sea surface heights (SSH) and free-air (FA) gravity anomalies from dense satellite altimeter SSH data with enhanced accuracies over the full spectrum of the gravity field. A wavenumber correlation filtering (WCF) of co-linear SSH tracks is developed for the coherent signals of sub-surface geological masses. Orbital cross-over adjustments with bias parameters are applied to the filtered SSH data, which are then separated into two groups of ascending and descending tracks and gridded with tensioned splines. A directional sensitive filter (DSF) is developed to reduce residual errors in the orbital adjustments that appear as track patterned SSH. Finally, FA gravity anomalies can be obtained by the application of a gradient filter on a high resolution estimate of geoid undulations after subtracting dynamic sea surface topography (DSST) from the SSH. These procedures are applied to the Geosat Geodetic Mission (GM) data of the southern oceans in a test area of ca. $900km\;\times{1,200}\;km$ to resolve geoid undulations and FA gravity anomalies to wavelengths of-10 km and larger. Comparisons with gravity data from ship surveys, predictions by least squares collocation (LSC), and 2 versions of NOAA's predictions using vertical deflections illustrate the performance of this procedure for recovering all elements of the gravity spectrum. Statistics on differences between precise ship data and predicted FA gravity anomalies show a mean of 0.1 mgal, an RMS of 3.5 mgal, maximum differences of 10. 2 mgal and -18.6 mgal, and a correlation coefficient of 0.993 over four straight ship tracks of ca. 1,600 km where gravity changes over 150 mgals.

  • PDF

Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area (수도권 AWS 기온을 이용한 MODIS, Landsat 위성의 지표면 온도 분석)

  • Jee, Joon-Bum;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.315-329
    • /
    • 2014
  • In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.

Classification of Sedimentary Facies Using IKONOS Image in Hwangdo Tidal Flat, Cheonsu Bay (IKONOS 영상을 이용한 천수만 황도 갯벌 표층 퇴적상 분류)

  • Ryu, Joo-Hyung;Woo, Han Jun;Park, Chan-Hong;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • To classify the surface sedimentary facies using IKONOS image collected over Hwangdo tidal flat in Cheonsu Bay, the optical reflectance was compared for characterizing various sedimentary environments such as grain size, tidal channel pattern and area ratio of surface remnant water. The intertidal DEM (Digital Elevation Model) was generated by echo-sounder for analyzing the relationship between IKONOS image and sedimentary environments including topography. The boundary of the optical reflectance between mud-mixed facies and sand facies was distinct, and discrimination of the associated sandbar feature was also possible. The mud-mixed facies coupled with intricate tidal channels is confined to the relatively hi호 topography of Hwangdo tidal flat. The boundary between mud and mixed flat was indistinct in IKONOS optical reflectance but it would have a difference in the area ratio of surface remnant water. The dark area in the image represented the well developed sand facies having a lot of surface remnant water due to the relatively low surface topography. The overall accuracy of characterizing the surface sediment facies by maximum likelihood classification method was 86.2 %. These results demonstrate that high spatial resolution satellite imagery such as IKONOS coupled with knowledge of grain size, surface remnant water and tidal channel network can be effectively used to characterize the surface sedimentary facies (mud, mixed and sand) network of the tidal flat environments.

  • PDF

Biotope Mapping and Evaluation in Gangseo-Gu of Busan Metropolitan City (부산광역시 강서구의 비오톱 지도작성 및 평가)

  • Choi, Song-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.92-106
    • /
    • 2008
  • The purpose of this study is to identify land use types and to develop and evaluate biotope maps for Gangseo-Gu (ward) in Busan Metropolitan City, South Korea, using the Degree of Hemeroby. Hemeroby is a measurement concept or tool to assess the magnitude of human impact on ecosystems. Gangseo-Gu is the second largest Gu in Busan and is under strong development pressure. Before the field survey, biotopes were pre-classified based on digital maps, aerial photos and high-resolution satellite images. The method employed in biotope survey and mapping was adopted from the modified method used in Seoul, which carried out the first biotope mapping in Korea in 2000. In the field survey, a comprehensive biotope mapping method was used. The results showed that the total surface area of biotopes in Gangseo-gu was $172,620,207m^2$(42,655 acres) and there were 29 biotope types with 13,631 polygons. The ratio of urban or built-up area 22.6% and the remaining areas were forest and open spaces, of which 22.6% were actual forest areas and 35.6% were paddy fields and other field areas. The Hemeroby Index of Gangseo-gu was 54.7, which suggests that Gangseo-gu has not yet been developed extensively and needs a long-term conservation and coordinated development plan.

  • PDF

WRF Numerical Study on the Convergent Cloud Band and Its Neighbouring Convective Clouds (겨울철 동해상의 대상수렴운과 그 주위의 대류운에 관한 WRF 수치모의 연구)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.49-68
    • /
    • 2014
  • This study analyzed atmospheric conditions for the convergent cloud band (Cu-Cb line) in developing stage and its neighbouring convections formed over the East Sea on 1 February 2012, by using synoptic, satellites data, and WRF numerical simulation output of high resolution. In both satellite images and the WRF numerical simulation outputs, the Cu-Cb line that stretched out toward northwest-southeast was shown in the East Sea, and cloud lines of the L mode were aligned in accordance with the prevailing surface wind direction. However, those of the T mode were aligned in the direction of NE-SW, which was nearly perpendicular direction to the surface winds. The directions of the wind shear vectors connecting top winds and bottom winds of the moist layers of the L mode and the T mode were identical with those of the cloud lines of L mode and T mode, respectively. From the WRF simulation convection circulations with a convergence in the lower layer of atmosphere and a divergence above 1.5 km ASL (Above Sea Level) were identified in the Cu-Cb line. A series of small sized vortexes (maximum vortex: $320{\times}10^{-5}s^{-1}$) of meso-${\gamma}$-scale formed by convergences was found along the Cu-Cb lines, suggesting that Cu-Cb lines, consisting of numerous convective clouds, were closely associated with a series of the small vortexes. There was an absolute unstable layer (${\partial}{\theta}/{\partial}z$ < 0) between sfc and ~0.3 km ASL, and a stable layer (${\partial}{\theta}/{\partial}z$ > 0) above ~2 km ASL over the Cu-Cb line and cloud zones. Not only convectively unstable layers (${\partial}{\theta}_e/{\partial}z$ < 0) but also neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) in the lower atmosphere (sfc~1.5 km ASL) were scattered around over the cloud zones. Particularly, for the Cu-Cb line there were convectively unstable layers in the surface layer, and neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) between 0.2 and ~1.5 km ASL over near the center of the Cu-Cb line, and the neutralization of unstable layers came from the release of convective instability.

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.