• 제목/요약/키워드: High-Pressure Environment

검색결과 1,006건 처리시간 0.057초

고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화 (Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment)

  • 이경철;타이라 쯔바사;구군모;이재영;박정수;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

LGT를 이용한 고온, 고압용 동압 센서 개발 (Development of the high-temperature, high-pressure Dynamic pressure sensor with LGT)

  • 권혁제;이경일;김동수;김영덕;이영태
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.17-21
    • /
    • 2012
  • This study developed a high-temperature, high-pressure dynamic pressure sensor using LGT(lanthanum gallium tantalate). The sensitivity of the fabricated dynamic pressure sensor was 2.1 mV/kPa and its nonlinearity was 2.5%FS. We confirmed that the high-temperature dynamic pressure sensor operated stably in high-temperature environment at $500^{\circ}C$. The developed dynamic pressure sensor using LGT is expected to be applicable not only to gas turbines but also in various industrial areas in duding airplanes and power stations.

H2O2/촉매 반응을 이용한 산화제 과잉 환경에서의 STS 계열 산화 거동 (Oxidation Behaviors of STS Series in Oxidizer-Rich Environment Using H2O2/Catalytic Reaction)

  • 신동해;최지선;신민규;고영성;김선진;한영민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.923-927
    • /
    • 2017
  • 고온/고압/산화제 과잉 환경에 노출되는 금속들은 급격한 산화(발화 및 연소)가 일어날 수 있다. 따라서, 본 연구에서는 고온/고압/산화제 과잉 환경에 적합한 금속 재질의 선정을 위해 수행되었다. 고온, 고압, 산화제 과잉 분위기를 만들기 위해서 과산화수소의 촉매반응 활용한 시험 설비를 구축하고 STS 계열 금속 재질에 대한 금속 산화 및 발화에 대한 평가를 진행하였다. 그 결과, 선정된 재질의 변형(변색) 및 표면 거칠기에 변화가 관찰되었지만, 시편의 무게 및 두께에 대한 변화는 크지 않음을 확인하였다.

  • PDF

고압상태에서의 디젤연료분무의 연소 및 매연가스배출 특성 (Combustion and Emission Characteristics of Diesel Spray in High-Pressure Environment)

  • 권영동;김용모;김세원;박신배
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.18-28
    • /
    • 1997
  • The present study is mainly aiming at numerically analyzing the combustion and emission characteristics of the diesel spray in a high-pressure environment. Computations are peformed for the peak chamber pressure with range from 4.08 MPa to 162 MPa. Numerical results indicate that the pressure increase in combustion chamber significantly influences the mechanism for droplet dynamics and mixing characteristics, spray penetration autoignition, flame lift-on height and the propagation or fuel vapor and flame. By increasing the ratio or the ambient density to injected liquid density, the fuel-air mixing rates and the burning rates increase and the $NO_x/soot$ emission level decreases.

  • PDF

고압 상태에서의 액체 산소의 증발 특성 해석 (Vaporization Characteristics of Liquid Oxygen at High-Pressure Environment)

  • 유용욱;김용모;손정락
    • 한국추진공학회지
    • /
    • 제2권3호
    • /
    • pp.90-98
    • /
    • 1998
  • 본 연구에서 개발한 고압증발 모델을 이용하여 고압 연소장에서의 액체연료추진제의 증발 과정을 수치적으로 해석하였다. 고압상태에서 액적의 증발 특성에 중요한 영향을 미치는 실제 기체의 거동, 온도 및 압력에 따른 가변물성치의 영향, 주위기체의 용해현상을 고려하였고 일반적인 상평형 관계식을 이용하였다. 실험치와 비교하여 고압증발모델의 예측능력을 체계적으로 검증하였고 로켓엔진의 고온 고압 연소실조건에서 LOX 액적의 증발 특성을 상세하게 논의하였다.

  • PDF

고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석 (Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment)

  • 김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

고온 고압 유체를 이용한 고농도 시안폐액의 환경친화 기술에 관한 연구 (A Study on the Environment Familiar Technology of High Dense Cyanogen Wastewater by Using High Temperature and High Pressure Materiality)

  • 황상용;이규성
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.141-147
    • /
    • 1998
  • Under high temperature and high pressure, cyanogen disinter gration distruction mechanism brought followings results through continuous plug flow reactor system. 1. The temperature was a important reacting factor in cyanogen disintegration. Over $612.8^{\cird}K$ high disintegration rate or 99.99% was shown even under $2000{\;}mg/{\ell}$ cyanogen density. 2. The conditions of cyanogen disintegration was gained through experimenting the supercrietical condition of water in basic. To gain 99.99% disintegration rate under $1000{\;}mg/{\ell}$ early cyanogen density, the pressure showed 52.8 seconds at $523^{\cird}K$ and 84.2 atm and gained $0.56{\;}mg/{\ell}$ operating density. 3. Here is the reaction velocity formula of cyanogen disintegration by hydrolysis: This formula indicates the high possibility of cyanogen disintegration within a short time. And it also implys the potential possibility on treating NBDICOD and the technology in developing the environment cleaning progress as small size automatic controlling equipment.

  • PDF

고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성 (Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments)

  • 임경훈;이봉수;김종현;구자예
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

건물 내 공기유동 해석에 외부 바람이 미치는 영향의 분석 (A Simulation Method for Considering the Outdoor Wind-Pressure in Calculation of Indoor Air-Flow in High-Rise Buildings)

  • 김대영;송두삼
    • 설비공학논문집
    • /
    • 제28권2호
    • /
    • pp.55-62
    • /
    • 2016
  • The air flows in building caused by thermal buoyancy, known as the stack effect, have a pronounced influence on both the indoor environment (thermal environment, noise, draught and contaminant diffusion) and energy needs in high-rise buildings. Prior studies for airflow in high-rise buildings were focused on the degree of stack effect and countermeasures. The wind pressure was neglected during the calculation of the indoor airflow in high-rise buildings to clarify the effect of thermal buoyancy in previous studies. However, wind is an important driving force of indoor airflows in buildings with the stack effect. In this study, the effect of wind pressure on indoor airflow in high-rise building when the stack effect is dominant in winter was analyzed. In this paper, methods that involved considering the wind pressure in airflow network simulation were analyzed.

높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델 (An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment)

  • 박순홍;서상현
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.