• Title/Summary/Keyword: High-Pressure Environment

Search Result 1,005, Processing Time 0.036 seconds

Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment (고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Park, Jeong Su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

Development of the high-temperature, high-pressure Dynamic pressure sensor with LGT (LGT를 이용한 고온, 고압용 동압 센서 개발)

  • Kwon, Hyuk Jae;Lee, Kyung Il;Kim, Dong Su;Kim, Young Deog;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.17-21
    • /
    • 2012
  • This study developed a high-temperature, high-pressure dynamic pressure sensor using LGT(lanthanum gallium tantalate). The sensitivity of the fabricated dynamic pressure sensor was 2.1 mV/kPa and its nonlinearity was 2.5%FS. We confirmed that the high-temperature dynamic pressure sensor operated stably in high-temperature environment at $500^{\circ}C$. The developed dynamic pressure sensor using LGT is expected to be applicable not only to gas turbines but also in various industrial areas in duding airplanes and power stations.

Oxidation Behaviors of STS Series in Oxidizer-Rich Environment Using H2O2/Catalytic Reaction (H2O2/촉매 반응을 이용한 산화제 과잉 환경에서의 STS 계열 산화 거동)

  • Shin, Donghae;Choi, Jiseon;Shin, Minku;Ko, Youngsung;Kim, Seonjin;Han, Yeongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.923-927
    • /
    • 2017
  • Metal exposed to high temperature/high pressure/oxidizer-rich environment may cause rapid oxidation(ignition and combustion). Therefore, this study was performed for the selection of metal appropriate for high temperature/high pressure/oxidizer-rich environment. In order to make the high temperature, high pressure and oxidizer-rich environment, the test facility utilizing the catalytic reaction of hydrogen peroxide was constructed and the metal oxidation and ignition of the STS series metals were evaluated. The result showed that the change of the selected material (discoloration) and the surface roughness were observed, but the change in the weight and thickness of the specimen was not significant.

  • PDF

Combustion and Emission Characteristics of Diesel Spray in High-Pressure Environment (고압상태에서의 디젤연료분무의 연소 및 매연가스배출 특성)

  • Kwon, Y.D.;Kim, Y.M.;Kim, S.W.;Park, S.B.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.18-28
    • /
    • 1997
  • The present study is mainly aiming at numerically analyzing the combustion and emission characteristics of the diesel spray in a high-pressure environment. Computations are peformed for the peak chamber pressure with range from 4.08 MPa to 162 MPa. Numerical results indicate that the pressure increase in combustion chamber significantly influences the mechanism for droplet dynamics and mixing characteristics, spray penetration autoignition, flame lift-on height and the propagation or fuel vapor and flame. By increasing the ratio or the ambient density to injected liquid density, the fuel-air mixing rates and the burning rates increase and the $NO_x/soot$ emission level decreases.

  • PDF

Vaporization Characteristics of Liquid Oxygen at High-Pressure Environment (고압 상태에서의 액체 산소의 증발 특성 해석)

  • 유용욱;김용모;손정락
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.90-98
    • /
    • 1998
  • The vaporization process of liquid oxygen(LOX) at high pressure environment is numerically investigated. The present vaporization model can account for the high-pressure effects such as ambient gas solubility, real gas behavior and variable properties. The predicted phase-equilibrium compositions for $N_2$/$H_2$ and $O_2$/He system are well agreed with experimental data. The LOX vaporization characteristics is parametrically studied for wide range of the operating conditions encountered in the high-pressure combustion process of liquid rocket engine.

  • PDF

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

A Study on the Environment Familiar Technology of High Dense Cyanogen Wastewater by Using High Temperature and High Pressure Materiality (고온 고압 유체를 이용한 고농도 시안폐액의 환경친화 기술에 관한 연구)

  • 황상용;이규성
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • Under high temperature and high pressure, cyanogen disinter gration distruction mechanism brought followings results through continuous plug flow reactor system. 1. The temperature was a important reacting factor in cyanogen disintegration. Over $612.8^{\cird}K$ high disintegration rate or 99.99% was shown even under $2000{\;}mg/{\ell}$ cyanogen density. 2. The conditions of cyanogen disintegration was gained through experimenting the supercrietical condition of water in basic. To gain 99.99% disintegration rate under $1000{\;}mg/{\ell}$ early cyanogen density, the pressure showed 52.8 seconds at $523^{\cird}K$ and 84.2 atm and gained $0.56{\;}mg/{\ell}$ operating density. 3. Here is the reaction velocity formula of cyanogen disintegration by hydrolysis: This formula indicates the high possibility of cyanogen disintegration within a short time. And it also implys the potential possibility on treating NBDICOD and the technology in developing the environment cleaning progress as small size automatic controlling equipment.

  • PDF

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

A Simulation Method for Considering the Outdoor Wind-Pressure in Calculation of Indoor Air-Flow in High-Rise Buildings (건물 내 공기유동 해석에 외부 바람이 미치는 영향의 분석)

  • Kim, Dae-Young;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.55-62
    • /
    • 2016
  • The air flows in building caused by thermal buoyancy, known as the stack effect, have a pronounced influence on both the indoor environment (thermal environment, noise, draught and contaminant diffusion) and energy needs in high-rise buildings. Prior studies for airflow in high-rise buildings were focused on the degree of stack effect and countermeasures. The wind pressure was neglected during the calculation of the indoor airflow in high-rise buildings to clarify the effect of thermal buoyancy in previous studies. However, wind is an important driving force of indoor airflows in buildings with the stack effect. In this study, the effect of wind pressure on indoor airflow in high-rise building when the stack effect is dominant in winter was analyzed. In this paper, methods that involved considering the wind pressure in airflow network simulation were analyzed.

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.