• Title/Summary/Keyword: High-Precision

Search Result 6,158, Processing Time 0.04 seconds

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

Study on the Velocity Trajectory for High Speed and High Precision Machining of CNC Machines (CNC 공작기계의 고속 고정밀 가공을 위한 모서리 속도궤적 연구)

  • Kim, Han-Suk;Jeon, Do-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.14-23
    • /
    • 1999
  • This paper proposes a method to generate the velocity trajectory which guarantees user specified contour errors at corners for high speed and high precision motion control of CNC machines. The relation among the desired trajectory, system bandwidth and corner contour error are derived. Experiments show that the corner contour error specified by users can be guaranteed with the proposed velocity trajectory.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Thermal Behavior Analysis of Machine Tool Structures using a Predictor-Corrector Method (공작기계구조물의 열적 거동 해석에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.78-81
    • /
    • 2002
  • To achieve high precision machine totals with high speed, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In this view the chief things that thermal deformation of machine tool structure is directly related to high precision. And thermal behavior for transmission procedure have an effect on high precision. It is needed to exact temperature distribution of each members and all contact elements included for machine tool structure. This paper deals with thermal behavior caused by temperature variation in a high speed feeding process. At this procedure of temperature distribution is estimated using a Predictor-Corrector Method.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

Characteristics of floating couplings of ball screw for high precision feeding system (고정밀 이송을 위한 볼스크류용 체결기구의 특성에 관한 연구)

  • 김인찬;박천홍;정윤교;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • As the run out error and misalignment of ball screw connected directly to guide table largely affect the motion accuracy of guideway, floating coupling that releases the table from screw nut except feed and rotational direction is needed todecrease its influences. The purpose of this study is to propose a practical model floating coupling of ball serew for high precision feeding system. The straightness, dynanic characteristics and micro step response of hydrostatic guideway, mounted with three types of coupling fixed type, leaf spring type and hydrostatic type, are tested and compared. From the resuts of experiments, it is proved that a hydrostatic type floating coupling is superior to other couplings and is available to high precision feeding system with ball screw.

  • PDF

Temperature Distributions of High Precision Spindle with Built -in Motor (모터내장형 주축의 온도분포해석에 관한 연구)

  • 김용길;김수태;박천홍;김춘배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.624-628
    • /
    • 1996
  • Unsteady-state temperature distributions in the high precision spindle system with built-in motor are studied. For the analysis, three dimensional model is built for the high precision spindle. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficient. Temperature distributions are computed using the finite element method. Analysis results are compared with the measured data. Analysis shows that temperature distributions of high precision spindle system can be estimated resonably using the three dimensional model through the finite element method.

  • PDF

Design Technology of High Speed and Precision Machining Center (초곡속 고정밀 머시닝 센터 설계 기술)

  • Kim, Bup-Min;Choi, Won-Sun;Ha, Jae-Young;Kim, Tae-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.869-877
    • /
    • 2011
  • In order to manufacture precision parts which are used for IT and BT Industry by machining, users need higher speed & precision machining center. So, for development of this kind of machine, we designed gantry type machining center which is piling of 3 axes on one moving body and the 2-axis rotary table is fixed on the base. It is applied linear motor that is instead of ball-screw and servo-motor combination and 50,000 rpm high-speed spindle. Composite material structure called mineral casting or resin concrete is applied also. This paper presents design technology and evaluated results of high speed and precision machining center.

Structural Characteristic Analysis of a High-Precision Centerless Grinding Machine with Concrete-Filled Bed (콘크리트 층진 베드를 적용한 초정밀 무심 연삭기의 구조 해석)

  • Kim Seok Il;Cho Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.172-179
    • /
    • 2005
  • A high-precision centerless grinding machine has been recognized as a core equipment performing the finish outer-diameter grinding process of ferrules which are widely used as fiber optic connectors. In this study, in order to realize the high-precision centerless grinding machine, the structural characteristic analysis and evaluation are carried out on the virtual prototype consisted of the steel bed, hydrostatic GW and RW spindle systems, hydrostatic RW feed mechanism, RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffnesses of centerless grinding machine are estimated based on the relative deformations between GW and RW caused by the grinding forces. And the simulated results illustrate that the concrete-filled bed has the considerable effect on the improvement of the structural stiffness of centerless grinding machine.

Structural Characteristic Analysis of a High-precision Centerless Grinding Machine with a Concrete-filled Bed

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a structural characteristic analysis and evaluation were carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffness values of the centerless grinding machine were estimated based on the relative displacements between the GW and RW caused by grinding forces. The simulated results illustrated that a concrete-filled bed considerably improved the structural stiffness and accuracy of a high-precision centerless grinding machine.