• Title/Summary/Keyword: High-Performance Work System

Search Result 715, Processing Time 0.039 seconds

The performance evaluation of Stirling cryocooler for thermal imaging system (IV) : Vibration, Noise, Leak test (열상장비용 스터링 극저온 냉동기 특성평가 (IV) : 진동, 소음, 누설시험)

  • 박성제;홍용주;김효봉;김양훈;최상규;나종문
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • This paper presents the results of a series of performance tests for the Stilting cryocooler. A free piston and free displacer(FPFD) Stilting cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM. Our coolers are specifically designed to work in the thermal imaging device and to meet requirements such as cooling capacity, COP and high reliability. In this work, Stilting cryocooler is designed, manufactured and fabricated, and performance characteristics for the vibration, acoustic noise, EMI and leak rate are evaluated. Vibration outputs are measured to 20KHz for compressor and expander, respectively. And, the objective of noise test is a noise level, less than 30㏈ at 5 m. EMI tests are carried out according to the standard MIL-STD-461C tests RE01 and RE02. Leak test for the Stilting cryocooler is performed by bombing method.

  • PDF

Disk MHD Accelerator with Swirl Vane and Its Performance

  • Takeshita, Shinji;Furuya, Seizo;Harada, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.536-542
    • /
    • 2008
  • The rocket technology has the best reliability and the high acceleration performance currently. In addition, next generation propulsion system is acquired to low cost and high payload percentage at that same time. This work is to improve the performance of Diskshaped MHD accelerator which is expected as the one of the solution. In this study we have been focusing on the swirl vane. It is so important to know that how the swirl vane contribute the plasma and its performance. As results, the gas velocities of r-component with inlet swirl were increased about over 3000m/s at the channel exit. And then static gas pressure were also reduced, we found that the case with inlet swirl gives the good influence to the acceleration performance. And the difference of the acceleration by positive and negative inlet swirl is that gas velocity of $\theta$-component may operate to the electric field.

  • PDF

Cyber-attack and Cybersecurity Design for a Smart Work System (스마트워크 시스템을 위한 사이버 공격 및 사이버 보안 설계)

  • Cheon, Jae-Hong;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • The speed of technological development is increasing, and high-performance digital devices are spreading. Wired digital devices such as PCs have been optimized for existing wired environments, but needs are shifting away from the constraints of space and space to smart work that enables efficient work anywhere and anytime. The Smart Work System security design is needed to secure integrity and availability in the face of various security threats including physical threats (lost, stolen, and damaged terminals), technical threats (data theft, DoS: denial of service), and unauthorized access outside the wired environment. In this study, we analyzed smart work network systems, wired / wireless link systems, and digital smart devices. We also studied cyber-attack analysis and cybersecurity design methods for a Smart Work wired system and a future wireless system. This study will be used as basic data for building a secure Smart Work system.

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

On the Performance of Oracle Grid Engine Queuing System for Computing Intensive Applications

  • Kolici, Vladi;Herrero, Albert;Xhafa, Fatos
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.491-502
    • /
    • 2014
  • In this paper we present some research results on computing intensive applications using modern high performance architectures and from the perspective of high computational needs. Computing intensive applications are an important family of applications in distributed computing domain. They have been object of study using different distributed computing paradigms and infrastructures. Such applications distinguish for their demanding needs for CPU computing, independently of the amount of data associated with the problem instance. Among computing intensive applications, there are applications based on simulations, aiming to maximize system resources for processing large computations for simulation. In this research work, we consider an application that simulates scheduling and resource allocation in a Grid computing system using Genetic Algorithms. In such application, a rather large number of simulations is needed to extract meaningful statistical results about the behavior of the simulation results. We study the performance of Oracle Grid Engine for such application running in a Cluster of high computing capacities. Several scenarios were generated to measure the response time and queuing time under different workloads and number of nodes in the cluster.

New Developments for Mosaic CCDs

  • Han, Wonyong
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.21-21
    • /
    • 1993
  • The imaging areas of currently available optical detectors are relatively small to cope with large image areas such as telescope focal Planes. One Possibility to obtain large detection areas is to assemble mosaics of Charge Coupled Devices(CCDs) and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however such optimisation is very important when the ultimate low light level performance is required particularly for new devices. In this work, a new concept has been developed for an entirely novel approach where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The controller has been designed to include one electronic of component produced by CAD software where most of the digital circuits are integrated to minimise the component count and improve the efficiency of the system greatly. The software has an open architecture to permit convenient modificationl by the user to fit their specific purposes. The desire of controller allows great flexibility of system parameters by the softwa re, specifically for the compatibility to deal with any number of mixed CCDs and in any format within the practical limit. The system has been integrated to test the performance and the result is discussed for readout noise, system linearity and cross-talk between the CCDs. The system developed in this work can be applicable not only for astro nomical observation with a telescope but also in other related fields for low light level detection systems such as spectroscopic application, remote sensing and X-ray detecti13n systems with large sensing areas and high resolution.

  • PDF

Filled Skutterudites: from Single to Multiple Filling

  • Xi, Lili;Zhang, Wenqing;Chen, Lidong;Yang, Jihui
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • This paper shortly reviews our recent work on filled skutterudites, which are considered to be one of the most promising thermoelectric (TE) materials due to their excellent power factors and relatively low thermal conductivities. The filled skutterudite system also provides a platform for studying void filling physics/chemistry in compounds with intrinsic lattice voids. By using ab initio calculations and thermodynamic analysis, our group has made progresses in understanding the filling fraction limit (FFL) for single fillers in $CoSb_3$, and ultra-high FFLs in a few alkali-metal-filled $CoSb_3$ have been predicted and then been confirmed experimentally. FFLs in multiple-element-filled $CoSb_3$ are also investigated and anonymous filling behavior is found in a few specific systems. The calculated and measured FFLs, in both single and multiple-filled $CoSb_3$ systems, show good accordance so far. The thermal transport properties can be understood qualitatively by a phonon resonance scattering model, and it seems that a scaling rule may exist between the lattice thermal resistivity and the resonance frequency of filler atoms in filled system. Even though a few things become clear now, there are still many unsolved issues that call for further work.

Performance Analysis of a NOW According to the Number of Processes and Execution Time (프로세스의 수와 실행시간에 따른 NOW의 성능 분석)

  • 조수현;김영학
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.135-145
    • /
    • 2002
  • Recently, instead of a high-cost supercomputer, there haws been widely used a NOW system that consists of low-cost PCs and workstations connected all over the network In a NOW, performance for parallel processing depends on the computation pouter of each computer and communication time. Currently, a lot of methods have been proposed in order to increase the performance of parallel processing. However, the previous results have been studied in the view of balancing work load as the computation pouter of each computer. If a computer has multiple work precesses in a NOW, we can predict a decrease of communication tire needed in message passing, Therefore, in this paper, we analyzes factors of improving the performance in the view of work precesses, and evaluates experimently an effect on total performance as the number of work processes increases. Also, we propose a new broadcasting method to be used in experiment of this paper. This paper uses the LAM/MPI for an experimental evaluation.

  • PDF

Suggestions for Improvement of Industrial High School Education Based on the Value of Competency-Based Education (능력 중심 교육의 가치가 공업계 고등학교 교육의 운영 개선에 주는 시사점)

  • Kim, Hee-Pil
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.33-44
    • /
    • 2005
  • The purpose of this study is to suggest plans to improve the industrial high school through the inquiry of Competency-Based Education(CBE). The suggestions are as followings: (1) Selection and organization of the educational contents of industrial high school must be based on job analysis. (2) Instructional objectives must be defined as a performance objective and enabling objectives. (3) Instruction must be individualized in method, the instructional contents must be organized in the unit of module. (4) Evaluation system must be not knowledge based but performance-based. (5) Physical Environment of work shop must be organized based on facilities, equipments and machines abstracted by job analysis. (6) Competency-Based Teacher Education(CBTE) program is required to train competent teachers in practice.