• Title/Summary/Keyword: High-Loading Electrode

Search Result 40, Processing Time 0.026 seconds

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

Development of Slurry Flow Control and Slot Die Optimization Process for Manufacturing Improved Electrodes in Production of Lithium-ion Battery for Electric Vehicles (전기자동차 리튬이온 배터리 제조공정에서 Loading Level 산포최소화 코팅을 통한 전극 품질개선에 관한 연구)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.14-20
    • /
    • 2018
  • Electric vehicles are environmentally friendly because they emit no exhaust gas, unlike gasoline automobiles. However, since they are driven by the electric power from batteries, the distance they can travel based on a single charge depends on their energy density. Therefore, the lithium-ion battery having a high energy density is a good candidate for the batteries of electric vehicles. Since the electrode is an essential component that governs their efficiency, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the coating process is a critical step in the manufacturing of the electrode, which has a significant influence on its performance. In this paper, we propose an innovative process for improving the efficiency and productivity of the coating process in electrode manufacturing and describe the equipment design method and development results. Specifically, we propose a design procedure and development method in order to improve the core plate coating quality by 25%, using a technology capable of reducing the assembly margin due to its high output/high capacity and improving the product capacity quality and assembly process yield. Using this method, the battery life of the lithium-ion battery cell was improved. Compared with the existing coating process, the target loading level is maintained and dispersed to maintain the anode capacity (${\pm}0.4{\rightarrow}{\pm}0.3mg/cm^2r$ reduction).

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

Fabrication and Realization of Three-Electrode Type Color Reflective Display (3전극형 반사형 컬러 디스플레이의 제작 및 구현)

  • Shin, Yong-Kwan;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We propose a fabrication process of a 3-electrode type reflective display and ascertain the realized color panel. The first design is proceeded with basis on Ti electrode for fast panel fabrication, easy align process, and high reflection of a white image. To observe the particle movement at the lower electrodes and optimize the space between electrodes, we design the second patterns, from which we establish a fabrication process with the mixing of electronic ink, loading of this ink, electronic ink assembly, driving, and packaging. After aging process, we ascertain a normally driving panel with black, white, and blue color.

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

High Performance Electrode of Polymer Electrolyte Membrane Fuel Cells Prepared by Direct Screen Printing Process (직접 스크린 프린팅법으로 제조된 고분자 전해질 연료전지의 고성능 전극)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • Screen printing it one of the most popular methods for the fabrication of catalytic layer in electrode of polymer electrolyte membrane fuel cells (PEMFCs) due to its convenience and adaptability. This paper suggests an improved screen-printing method, which is rather simple suppressing the swelling trouble without additive process and competitive with very low Pt loading in comparison with the previous methods. Particularly, the gasket unified MEA made better performances than the other especially at high current area due to blocking effect on the gas leakage during the operation. These methods give us more simplified and faster fabrication chances.

  • PDF

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Ni-P Coated Sn Powders as Anode for Lithium Secondary Batteries

  • Jo, Yong-Nam;Im, Dong-Min;Kim, Jae-Jung;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • Nano-sized Sn particles were coated with Ni-P layer using an electroless deposition method and their anodic performance was tested for lithium secondary batteries. Uniform coating layers were obtained, of which the thickness was controlled by varying the $Ni^{2+}$ concentration in the plating bath. It was found that the Ni-P layer plays two important roles in improving the anodic performance of Sn powder electrode. First, it prevents the inter-particle aggregation between Sn particles during the charge/discharge process. Second, it provides an electrical conduction pathway to the Sn particles, which allows an electrode fabrication without an addition of conductive carbon. A pseudo-optimized sample showed a good cyclability and high capacity ($>400mAh\;g^{-1}$) even without conductive carbon loading.

Characteristics of Rail head Upbringing Welding using CH-90 Electrode (CH-90 용접봉을 이용한 레일 두부 육성용접의 특성)

  • Lee, Bo-Yeong;An, Dae-Hwan;Kim, Jae-Seong;Ryu, Deok-Hui;Jin, Hyeong-Guk;Gwon, Ho-Jin
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.177-179
    • /
    • 2005
  • As rail steel at a crossing area must undergo much higher loading than those at regular railway, Mn-containing casting steel is normally used for its high load-carrying capability and reduced wear rate. However, as these Mn-containing casting steel is tend to have casting defects, manufacturing cost to produce defect-free Mn-containing casting steel becomes quite expensive. Therefore, in order to investigate the possibilities of replacing expensive Mn-containing casting steel with a mild steel with a surface build-up using a Mn-alloyed steel electrode.

  • PDF